Mathematics Subject Classification: Primary: 62H30; secondary: 86A10, 86-08.
Ver contenido complete en PDF.
Artículo
Weather types for the seasonal transitions in Central America
Tipos de tiempo atmosférico durante las transiciones estacionales en América Central
1Universidad de Costa Rica, Centro de Investigaciones Geofísicas (CIGEFI), San José, Costa Rica; fernan.saenzsoto@ucr.ac.cr
2Universidad de Costa Rica, Centro de Investigaciones Geofísicas (CIGEFI), Escuela de Física y Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), San José, Costa Rica; erick.alfaro@ucr.ac.cr
3Universidad de Costa Rica, Centro de Investigaciones Geofísicas (CIGEFI), Centro de Investigación en Matemática Pura y Aplicada (CIMPA) y Escuela de Física, San José, Costa Rica; hugo.hidalgo@ucr.ac.cr
Unsupervised learning techniques are employed to study the relationship between atmospheric circulation and precipitation over Central America and its surrounding areas. Specifically, the clustering algorithm k-means++ is applied to three coarse-grained datasets from ERA-interim reanalysis that are the candidates for representing the atmospheric state vector, each candidate contains its full temporal variability. Datasets are composed of: a) wind fields at 925, 800 and 200 hPa, b) same as “a)” plus convective available potential energy and c) same as “a)” plus total column water vapor. Clustering metrics, namely the variance ratio criterion, the silhouette criterion and the mean squared error, are computed to quantify clustering quality. Clusters are interpreted as weather types, recurrent configurations of the atmospheric state vector associated with observable weather states. The correct number of clusters for each dataset is determined with a Monte Carlo test of normality, to assure cluster existence. The main objective is to obtain a set of weather types containing elements that characterize the transition from and to the rainy season over the Pacific side of Central America as well as other elements of the seasonal cycle of regional precipitation, such as the Mid-Summer Drought. Besides the statistical metrics, in order to select between candidate datasets and plausible number of clusters, focus is given to the temporal characteristics of the clusters. Existing literature does not provide a set of weather types suitable to analyze seasonal transitions and the differences in the mechanisms associated with rainfall maxima.
Keywords: Central America; precipitation; weather types; cluster analysis; seasonal climate variability
Técnicas de aprendizaje no supervisado se emplean para estudiar la relación entre la circulación atmosférica y la precipitación sobre América Central y sus áreas circundantes. Específicamente, el algoritmo de agrupamiento k-means++ se aplica a tres conjuntos de datos de baja resolución del reanálisis ERA interim, estos son candidatos a representar el vector de estado atmosférico y cada uno contiene su variabilidad temporal completa. Los conjuntos de datos probados son: a) campos de viento a 925, 800 y 200 hPa, b) lo mismo que “a)” más la energía potencial convectiva disponible y c) lo mismo que “a)” más el vapor de agua en la columna total. Se calculan métricas de agrupamiento, a saber, el criterio de relación de varianza, el criterio de silueta y el error cuadrático medio, para cuantificar la calidad del agrupamiento. Los grupos se interpretan como weather types, configuraciones recurrentes del vector de estado atmosférico asociadas con estados observables del tiempo atmosférico. El número correcto de grupos para cada conjunto de datos se determina con una prueba de normalidad de Monte Carlo para asegurar la existencia de grupos reales. El objetivo principal es obtener un conjunto de weather types que contengan elementos que caractericen la transición de y hacia la temporada de lluvias en la vertiente del Pacífico de América Central, así como otros elementos del ciclo estacional de precipitación regional, como las canículas. Además de las métricas estadísticas, para seleccionar entre conjuntos de datos y un número plausible de grupos, se presta atención a las características temporales de los grupos. La literatura existente no proporciona un conjunto de weather types adecuado para analizar transiciones estacionales y las diferencias en los mecanismos asociados con los máximos estacionales de lluvia.
Palabras clave: América Central; precipitación; tipos de tiempo atmosférico; análisis de conglomerados; variabilidad climática estacional.
Mathematics Subject Classification: Primary: 62H30; secondary: 86A10, 86-08.
Ver contenido complete en PDF.
Acknowledgements
The authors wish to acknowledge the funding of this research through the following Vicerrectoría de Investigación, Universidad de Costa Rica grants: C3991 (UCREA), C3195, C2806, C2103, C0130, B9454 (VI-Grupos), A5719 (Mini Congreso-CIGEFI), A4906 (Programa de Estudios Sociales de la Ciencia, la Técnica y el Medio Ambiente), A1715 y B0810. Eric Alfaro wishes to acknowledge the Escuela de Física, Vicerrectoría de Docencia, Universidad de Costa Rica, for his support during his sabbatical semester.
References
E, Alfaro. Some Characteristics of the Annual Precipitation Cycle in Central America and their Relationships with its Surrounding Tropical Oceans. Tópicos Meteorológicos y Oceanográficos. 9(2002), no. 2, 88-103. url: https://www.kerwa.ucr.ac.cr/handle/10669/15428. [ Links ]
E,J, Alfaro et al. Caracterización climática y análisis de mecanismos moduladores del descenso de las lluvias en la vertiente Caribe de América Central durante septiembre-octubre. Revista de Ciencias Ambientales. 58(2024), no. 1, 1-24. doi: 10.15359/rca.58-1.4 [ Links ]
E, Alfaro; X, Chourio; Á, Muñoz; S, Mason. Improved Seasonal Prediction Skill of Rainfall for the Primera Season in Central America. Int. J. Climatol 38(2018), e255-e268. doi: 10.1002/joc.5366 [ Links ]
J,A, Amador et al. The easternmost tropical Pacific. Part I: A climate review. Revista de Biología Tropical 64(2016), no. 1, 1-22. doi: 10.15517/rbt.v64i1.23407 [ Links ]
J, Amador. A Climatic Feature of Tropical Americas: The Trade Wind Easterly Jet. Tópicos Meteorológicos y Oceanográficos 5(1998), no. 2, 91-102. url: https://www.kerwa.ucr.ac.cr/handle/10669/76623. [ Links ]
J, Amador. The Intra-Americas Sea Low-Level Jet. Annals of the New York Academy of Sciences 1146(2008), no. 1, 153-188. doi: 10.1196/annals.1446.012 [ Links ]
J, Amador et al. The Easternmost Tropical Pacific, Part II: Seasonal and Intraseasonal Modes of Atmospheric Variability. Revista de Biología Tropical 64(2016), 23-57. doi: 10.15517/rbt.v64i1.23409 [ Links ]
D, Arthur; S, Vassilvitskii. k-means++: the advantages of careful seeding. ACM-SIAM Symposium on Discrete Algorithms. 2007. url: https://dl.acm.org/doi/10.5555/1283383.1283494. [ Links ]
C, Beck; A, Philipp; F, Streicher. The Effect of Domain Size on the Relationship Between Circulation Type Classifications and Surface. Climate. Int. J. Climatol. 36(2013), 2692-2709. doi: 10.1002/joc.3688 [ Links ]
R, Bombardi; V, Moron; J, Goodnight. Detection, Variability, and Predictability of Monsoon Onset and Withdrawal Dates: A Review. Int J Climatol. 40(2020), 641-667. doi: 10.1002/joc.6264 [ Links ]
C, Bretherton; M, Peters; L, Back. Relationships Between Water Vapor Path and Precipitation Over the Tropical Oceans. J. Climate 17(2004), 1517-1528. doi: 10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2 [ Links ]
T, Calinski; J, Harabasz. A Dendrite Method for Cluster Analysis. Communications in Statistics 3(1974), no. 1, 1-27. doi: 10.1080/03610927408827101 [ Links ]
X, Chadee; R, Clarke. Daily Near-Surface Large-Scale Atmospheric Circulation Patterns Over the Wider Caribbean. Climate Dynamics 44(2015), no. 11, 2927-2946. doi: 10.1007/s00382-015-2621-2 [ Links ]
K, Chang; K, Bowman; L, Siu; A, Rapp. Convective Forcing of the North American Monsoon Anticyclone at Intraseasonal and Interannual Time Scales. Journal of the Atmospheric Sciences 78(2021), no. 9, 2941-2956. doi:10.1175/JAS-D-21-0009.1 [ Links ]
B, Christiansen. Atmospheric Circulation Regimes: Can Cluster Analysis Provide the Number? Journal of Climate 20(2007), no. 10, 2229-2250. doi: 10.1175/JCLI4107.1 [ Links ]
C, Chung; S, Nigam. Weighting of Geophysical Data in Principal Component Analysis. Journal of Geophysical Research: Atmospheres 104(1999), no. D14, 16925-16928. doi: 10.1029/1999JD900234 [ Links ]
A, Dawson. EOFS: A Library for EOF Analysis of Meteorological, Oceanographic, and Climate Data. Journal of Open Research Software 4(2016), no.1, e14. doi: 10.5334/jors.122 [ Links ]
D, Dee et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q.J.R. Meteorol. Soc. 137(2011), 553-597. doi: 10.1002/qj.828 [ Links ]
T, Delsole; M, Tippett. Statistical Methods for Climate Scientists. 1st ed. Cambridge University Press, 2022. doi: 10.1017/9781108659055 [ Links ]
T,L, Delworth; M,E, Mann. Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics 16(2000), 661-676. doi: 10.1007/s003820000075 [ Links ]
A, Duran-Quesada; L, Gimeno; J, Amador. Role of Moisture Transport for Central American Precipitation. Earth System Dynamics 8(2017), no. 1, 147-161. doi: 10.5194/esd-8-147-2017 [ Links ]
A, Duran-Quesada; R, Sorí; P, Ordoñez; L, Gimeno. Climate Perspectives in the Intra-Americas Seas. Atmos 11(2020), no. 9, 959. doi: 10 . 3390 /atmos11090959 [ Links ]
W, Ebisuzaki. A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated. J. Climate 10(1997), 2147-2153. doi: 10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2 [ Links ]
D,B, Enfield; A,M, Mestas-Nuñez; P,J, Trimble. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters 28(2001), no. 10, 2077-2080. doi: 10.1029/2000GL012745 [ Links ]
C, Funk et al. The Climate Hazards Infrared Precipitation with Stations - A New Environmental Record for Monitoring Extremes. Sci Data 2(2015), 150066. doi: 10.1038/sdata.2015.66 [ Links ]
J, García-Franco; R, Chadwick; L, Gray. Revisiting Mechanisms of the Mesoamerican Midsummer Drought. Clim Dyn 60(2023), 549-569. doi: 10.1007/s00382-022-06338-6 [ Links ]
I, García-Martínez; M, Bollasina. Sub-Monthly Evolution of the Caribbean Low-Level Jet and Its Relationship with Regional Precipitation and Atmospheric Circulation. Climate Dynamics 54(2020), 4423-4440. doi: 10.1007/s00382-020-05237-y [ Links ]
R, Geen; S, Bordoni; D, Battisti; K, Hui. Monsoons, ITCZs, and the Concept of the Global Monsoon. Reviews of Geophysics 58(2020), e2020RG000700. doi: 10.1029/2020RG000700 [ Links ]
D, Glannakis; A, Majda. Data-driven methods for dynamical systems. R. Melnik (Ed.). Mathematical and Computational Modeling. 2015. doi: 10.1002/9781118853887.ch7 [ Links ]
I, Gouirand; V, Moron; B, Sing. Seasonal Atmospheric Transitions in the Caribbean Basin and Central America. Climate Dynamics 55(2020), 1809-1828. doi: 10.1007/s00382-020-05356-6 [ Links ]
A, Hannachi. Patterns Identification and Data Mining in Weather and Climate. Springer Cham, 2021. doi: 10.1007/978-3-030-67073-3 [ Links ]
F, Hansen. D. Belušić . Tailoring Circulation Type Classification Outcomes. International Journal of Climatology 41(2021), no. 14, 6145-6161. doi: 10.1002/joc.7171 [ Links ]
H, Hersbach et al. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society 146(2020), 1999-2049. doi: 10.1002/qj.3803 [ Links ]
H, Hidalgo; E, Alfaro. Some Physical and Socio-Economic Aspects of Climate Change in Central America. Progress in Physical Geography: Earth and Environment 36(2012), no. 3, 379-399. doi: 10.1177/0309133312438906 [ Links ]
H, Hidalgo; A, Durán-Quesada; J, Amador; E, Alfaro. The Caribbean Low-Level Jet, the Inter-Tropical Convergence Zone and Precipitation Patterns in the Intra-Americas Sea: A Proposed Dynamical Mechanism. Geografiska Annaler: Series A, Physical Geography 97(2015), no. 1, 41-59. doi: 10.1111/geoa.12085 [ Links ]
J,R, Holton; G,J, Hakim. An Introduction to Dynamic Meteorology. 5th. Academic Press, Waltham, MA, 2013. doi: 10.1016/C2009-0-63394-8 [ Links ]
K,T, Ingram; M,C, Roncoli; P,H, Kirshen. Opportunities and Constraints for Farmers of West Africa to Use Seasonal Precipitation Forecasts with Burkina Faso as a Case Study. Agricultural Systems 74(2002), no. 3, 331-349. doi: 10.1016/S0308-521X(02)00044-6 [ Links ]
M, Iturbide et al. An Update of IPCC Climate Reference Regions for Subcontinental Analysis of Climate Model Data: Definition and Aggregated Datasets. Earth System Science Data 12(2020), no. 4, 2959-2970. doi: 10.5194/essd-12-2959-2020 [ Links ]
M, Kanamitsu et al. NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society 83(2002), no. 11, 1631-1644. doi: 10.1175/BAMS-83-11-1631 [ Links ]
A, Karmalkar; R, Bradley; H, Diaz. Climate Change in Central America and Mexico: Regional Climate Model Validation and Climate Change Projections. Clim Dyn 37(2011), 605-629. doi: 10.1007/s00382-011-1099-9 [ Links ]
A, Laurie; M, Barlow; S,B, Feldstein; W,J, Gutowski. Identification of Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast. Climate Dynamics 50(2018), no. 5, 1819-1839. doi:10.1007/s00382-017-3724-8 [ Links ]
P, Laux; B, Böker; E, Martins; et al. A Semi-Objective Circulation Pattern Classification Scheme for the Semi-Arid Northeast Brazil. Int J Climatol 41(2021), 51-72. doi: 10.1002/joc.6608 [ Links ]
B, Liebmann; C,A, Smith. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc. 77(1996), 1275-1277. [ Links ]
S, Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28(1982), no. 2, 129-137. doi: 10.1109/TIT.1982.1056489 [ Links ]
J, MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: Statistics, Vol. 1. 1967. [ Links ]
V, Magaña; A, Amador; S, Medina. The Midsummer Drought over Mexico and Central America. Journal of Climate 12(1999), no. 6, 1577-1588. doi: 10.1175/1520-0442(1999)012%3C1577:TMDOMA%3E2.0.CO;2 [ Links ]
T, Maldonado; E, Alfaro; H, Hidalgo. Revision of the Main Drivers and Variability of Central America Climate and Seasonal Forecast Systems. Revista de Biología Tropical 66(2018), 153. doi: 10.15517/rbt.v66i1.33294 [ Links ]
T, Maldonado; E,J, Alfaro; H, Hidalgo. Analysis of Precipitation Clusters and Their Seasonal Changes over Central America for the 1976-2015 Period. Revista de Matemática Teoría y Aplicaciones 28(2021), no. 2, 337-362. doi: 10.15517/rmta.v28i2.42322 [ Links ]
J, Marengo et al. Onset and End of the Rainy Season in the Brazilian Amazon Basin. Journal of Climate 14(2001), no. 5, 833-852. doi: 10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2 [ Links ]
C, Martinez; Y, Kushnir; L, Goddard; et al. Interannual Variability of the Early and Late-Rainy Seasons in the Caribbean. Clim Dyn 55(2020), 1563-1583. doi: 10.1007/s00382-020-05341-z [ Links ]
J, Mejía; J, Yepes; J, Henao; et al. Towards a Mechanistic Understanding of Precipitation over the Far Eastern Tropical Pacific and Western Colombia, One of the Rainiest Spots on Earth. Journal of Geophysical Research: Atmospheres 126(2021), no. 5, e2020JD033415. doi: 10.1029/2020JD033415 [ Links ]
D, Mesa-Sánchez; O, Rojo-Hernández. On the General Circulation of the Atmosphere around Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 44(2020), no. 172, 857-875. doi: 10.18257/raccefyn.899 [ Links ]
S, Michaelides; F, Liassidou; C, Schizas. Synoptic Classification and Establishment of Analogues with Artificial Neural Networks. Pure and Applied Geophysics 164(2007), 1347-1364. doi: 10.1007/s00024-007-0222-7 [ Links ]
J, Morales; P. Arias, J. Martínez, A. Durán-Quesada. The Role of Low-Level Circulation on Water Vapour Transport to Central and Northern South America: Insights from a 2D Lagrangian Approach. International Journal of Climatology 41(2021), E2662-E2682. doi: 10.1002/joc.6873 [ Links ]
V, Moron; I, Gouirand; M, Taylor. Weather Types across the Caribbean Basin and Their Relationship with Rainfall and Sea Surface Temperature. Climate Dynamics 47(2015), no. 1, 601-621. doi: 10.1007/s00382-015-2858-9 [ Links ]
V, Moron et al. Weather Types and Hourly to Multiday Rainfall Characteristics in Tropical Australia. J. Climate 32(2019), 3983-4011. doi: 10.1175/JCLI-D-18-0384.1 [ Links ]
R, Muñoz-Jiménez; J, Giraldo-Osorio; A, Brenes-Torres; et al. Spatial and Temporal Patterns, Trends and Teleconnection of Cumulative Rainfall Deficits across Central America. International Journal of Climatology 39(2019), 1940-1953. doi: 10.1002/joc.5925 [ Links ]
R, Neal et al. The application of predefined weather patterns over India within probabilistic medium-range forecasting tools for high-impact weather. Meteorological Applications 29(2022), no. 3, e2083. doi: 10.1002/met.2083 [ Links ]
J,D, Neelin; O, Peters; K, Hales. The transition to strong convection. J. Atmos. Sci. 66(2009), 2367-2384. doi: 10.1175/2009JAS2962.1 [ Links ]
NOAA National Geophysical Data Center, Global Land One-kilometer Base Elevation (GLOBE) v.1. Tech. rep. NOAA National Centers for Environmental Information, 1999. doi: 10.7289/V52R3PMS [ Links ]
C,A, Ochoa-Moya et al. Climatological large-scale circulation patterns over the Middle Americas region. Atmosphere 11(2020), no. 7, 745. doi: 10.3390/atmos11070745 [ Links ]
M,E, Olmo et al. Circulation patterns and associated rainfall over south tropical South America: GCMs evaluation during the dry-to-wet transition season. Journal of Geophysical Research: Atmospheres 127(2022). doi: 10.1029/2022JD036468 [ Links ]
T,N, Palmer. A Nonlinear Dynamical Perspective on Climate Prediction. Journal of Climate 12(1999), no. 2, 575-591. doi: 10.1175/1520-0442(1999) 012<0575:ANDPOC>2.0.CO;2 [ Links ]
F, Pedregosa et al. Scikit-learn: machine learning in python. Journal of Machine Learning Research 12(2011), 2825-2830. [ Links ]
A, Philipp; C, Beck; R, Huth; J, Jacobeit. Development and comparison of circulation type classifications using the COST 733 dataset and software. International Journal of Climatology 36(2016), 2673-2691. doi: 10.1002/joc.3920 [ Links ]
A, Philipp et al. Long-Term Variability of Daily North Atlantic-European Pressure Patterns since 1850 Classified by Simulated Annealing Clustering. J. Climate 20(2007), no. 16, 4065-4095. doi: 10.1175/JCLI4175.1 [ Links ]
B, Quesada-Montano et al. Characterising droughts in Central America with uncertain hydro-meteorological data. Theoretical and Applied Climatology 137(2019), 2125-2138. doi: 10.1007/s00704-018-2730-z [ Links ]
N, Ramesh; Q, Nicolas; W,R, Boos. The Globally Coherent Pattern of Autumn Monsoon Precipitation. J. Climate 34(2021), no. 14, 5687-5705. doi: 10.1175/JCLI-D-20-0740.1 [ Links ]
P, Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20(1987), 53-65. doi: 10.1016/0377-0427(87)90125-7 [ Links ]
F, Sáenz; AM, Durán-Quesada. A climatology of low level wind regimes over Central America using a weather type classification approach. Frontiers in Earth Sciences3(2015), 1-18. doi: 10.3389/feart.2015.00015 [ Links ]
F, Sáenz et al. Atmospheric circulation types controlling rainfall in the Central American Isthmus. International Journal of Climatology 43(2023), no.1, 197-218. doi: 10.1002/joc.7745 [ Links ]
L, Siu; K, Bowman. Forcing of the upper-tropospheric monsoon anticyclones. Journal of the Atmospheric Sciences 76(2019), no. 7, 1937-1954. doi: 10.1175/JAS-D-18-0340.1 [ Links ]
I,T, Stewart; E,P, Maurer; K, Stahl; K, Joseph. Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central America from multiple global datasets. International Journal of Climatology 42(2021), no. 3, 1399-1417. doi: 10.1002/joc.7310 [ Links ]
M, Taylor; E, Alfaro. Central America and the Caribbean, climate of. J. Oliver (Ed.). Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht, 2005. doi: 10.1007/1-4020-3266-8 37 [ Links ]
J, Theiler et al. Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena 58(1992), no. 1, 77-94. doi: 10.1016/0167-2789(92)90102-S [ Links ]
L, Tomassini. The interaction between moist convection and the atmospheric circulation in the Tropics. Bulletin of the American Meteorological Society 101(2020), no. 8, E1378-E1396. doi: 10.1175/BAMS-D-19-0180.1 [ Links ]
K, Trenberth; D, Stepaniak; J, Caron. The global monsoon as seen through the divergent atmospheric circulation. Journal of Climate 13(2000), no. 22, 3969-3993. doi: 10.1175/1520-0442(2000)013<3969:tgmast>2.0.co;2 [ Links ]
A, Tsonis. Vertical stability in the atmosphere. An Introduction to Atmospheric Thermodynamics. 2nd ed. Cambridge University Press, 2007, 143-158. doi: 10.1017/CBO9780511619175.009 [ Links ]
N, Vigaud; A, Robertson. Convection regimes and tropical-midlatitude interactions over the intra-American seas from May to November. International Journal of Climatology 37(2017), no. S1, 987-1000. doi: 10.1002/joc.5051 [ Links ]
P, Wang et al. The global monsoon across timescales: coherent variability of regional monsoons. Climate of the Past 10(2014), no. 6, 2007-2052. doi: 10.5194/cp-10-2007-2014 [ Links ]
D, Wilks. Statistical Methods in the Atmospheric Sciences. Elsevier, Amsterdam, Netherlands, 2020. doi: 10.1016/C2017-0-03921-6 [ Links ]
Y, Zhang; J, Wallace; D, Battisti. ENSO-like Interdecadal Variability: 1900-93. Journal of Climate 10(1997), no. 5, 1004-1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 [ Links ]
E, Zorita; J,P, Hughes; D,P, Lettemaier; H, von Storch. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. Journal of Climate 8(1995), no. 5, 1023-1042. doi: 10.1175/1520-0442(1995)008<1023:SCORCP>2.0.CO;2 [ Links ]
Received: June 19, 2023; Accepted: November 30, 2023