SciELO - Scientific Electronic Library Online

 
vol.28 issue2Discrete sampling theorem to Shannon’s sampling theorem using the hyperreal numbers ∗RTraveling wave type solution in a Model Diffusive Predator-Prey type Holling II author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.28 n.2 San José Jul./Dec. 2021

http://dx.doi.org/10.15517/rmta.v28i2.36084 

Artículo

Bifurcaciones en Modelo Gause Depredador-Presa con discontinuidad

Bifurcations in Model Gause Predator-Prey with discontinuity

Christian Cortés-García1 

1Universidad Carlos III de Madrid, Departamento de Matemática - Departamento de Biología de Sistemas, Centro de Investigación en Biotecnología, Madrid, España; chcortes@math.uc3m.es cc.cortes@cnb.csic.es

Resumen

En este trabajo se presentan las condiciones necesarias para garantizar la existencia de un ciclo límite estable en un modelo de Gause depredador - presa y algunos aspectos geométricos para realizar un análisis cualitativo en sistemas dinámicos de Filippov bidimensional. Con esos lineamientos definidos, se estudia la dinámica de un modelo depredador-presa cuando la explotación en los depredadores es restringida si la cantidad de presas es inferior a un valor critico. El estudio es llevado a cabo por el análisis de bifurcación con relación a dos parámetros: explotación y protección de las poblaciones a interactuar.

Palabras clave: sistemas planares de Filippov; análisis de bifurcación; ciclo límite; modelo depredador-presa; ciclo de Canard.

Abstract

This paper presents the necessary conditions to guarantee the existence of a stable limit cycle in a predator - prey model and some geometrical aspects to perform a qualitative analysis in two - dimensional Filippov dynamic systems. With these defined guidelines, the dynamics of a predator - prey model are studied when exploitation in predators is restricted if the number of prey is lower than a critical value. The study is carried out by the bifurcation analysis in relation to two parameters: exploitation and protection of the populations to interact.

Keywords: planar systems Filippov; bifurcation analysis; limit cycles predatorprey systems; cicly Canard.

Mathematics Subject Classification: 34A36, 34C23, 34D20, 34D23, 92D25.

Ver contenido complete en PDF.

Agradecimientos

El autor agradece tanto a los revisores como a los editores por su esfuerzos para la publicación del presente articulo.

Referencias

V,I,Arnold.Ordinary Differential Equations, The MIT Press, translated from Russian and edited by Richard A, Silverman. Cambridge MA, London, 1973. https://mitpress.mit.edu/books/ordinary-differential-equations Links ]

C,A, Buzzi; T, de Carvalho; P,R, da Silva. Closed poly-trajectories and Poincaré index of non-smooth vector fields on the plane, Journal of Dynamical and Control Systems, 19(2013), no. 2, 173-193. Doi: 10.1007/s10883- 013-9169-4 [ Links ]

L, Edelstein-Keshet. Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia PA, 2005. Doi: 10.1137/1.9780898719147 [ Links ]

A,F,Filipov.Differential Equations with Discontinuous Righthand Sides, Mathematics and Its Applications 18 (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1988. Doi: 10.1007/978-94-015-7793-9 [ Links ]

H,I,Freedman.Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York, 1980. Doi: 10.2307/3556198 [ Links ]

M, Guardia; T,M, Seara; M,A, Teixeira. Generic bifurcations of low codimension of planar Filippov Systems, Journal of Differential Equations, 250(2010), no. 4, 1967-2023. Doi: 10.1016/j.jde.2010.11.016 [ Links ]

Y, Kuang; H,I, Freedman. Uniqueness of limit cycles in Gause-type models of predator-prey systems, Mathematical Biosciences, 88(1988), no. 1, 67-84. Doi: 10.1016/0025-5564(88)90049-1 [ Links ]

Y, Kuznetsov. Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112, Springer, New York, 1995. Doi: 10.1007/978-1-4757- 3978-7 [ Links ]

Y, Kuznetsov; S, Rinaldi; A, Gragnani. One-parameter bifurcations in planar Filippov systems, International Journal of Bifurcation and Chaos, 13(2003), no. 8, 2157-2188. Doi: 10.1142/S0218127403007874 [ Links ]

J,D,Murray.Mathematical Biology: I. An Introduction, 3rd Edition, Springer, New York, 2002. Doi: 10.1007/b98868 [ Links ]

J, Sotomayor. Lições de equações diferenciais ordinárias, Projeto Euclides, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 11(1979). [ Links ]

J, Yang; S, Tang; R,A, Cheke. Global stability and sliding bifurcations of a non-smooth Gause predator-prey system, Applied Mathematics and Computation, 224(2013), no. 1, 9-20. Doi: 10.1016/j.amc.2013.08.024 [ Links ]

Recibido: 10 de Octubre de 2020; Revisado: 19 de Enero de 2021; Aprobado: 11 de Marzo de 2021

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons