Mathematics Subject Classification: 82D10, 76W05, 37M05.
Ver contenido complete en PDF.
Artículo
Simulation of multiple plasma eddies in 2D
Simulación de torbellinos múltiples de plasma en 2D
1Costa Rica High Technology Center; San José; Costa Rica; dalvarado@cenat.ac.cr
2University of Costa Rica; School of Physics and Space Research Center; San José; Costa Rica; frutos@fisica.ucr.ac.cr
In this contribution, we present the simulations of convective plasma cells of the Sun in two dimensions. With a simple stream function, it is possible to visualize multiple n × n convective cells. To obtain the simulation, we solve the magnetic diffusion equation with a fourth order scheme. Some applications for this simulations are also presented.
Keywords: plasmas; MHD; computer simulation.
En esta contribución, presentamos las simulaciones de células de plasma convectivo del Sol en dos dimensiones. Con una función de flujo simple, es posible visualizar múltiples celdas convectivas n × n. Para obtener la simulación, resolvemos la ecuación de difusión magnética con un esquema de cuarto orden. También se presentan algunas aplicaciones para estas simulaciones.
Palabras clave: plasmas; MHD; simulaciones por computadora.
Mathematics Subject Classification: 82D10, 76W05, 37M05.
Ver contenido complete en PDF.
Acknowledgements
Thanks to the referees for their constructive and valuable observations that allowed an improvement of the manuscript.
References
D, Alvarado; A, De la Ossa; F, Frutos-Alfaro; E, Meneses. Parallelization of a magnetohydrodynamics model for plasma simulation, IEEE 38th Central America and Panama Convention, San Salvador, 2018, pp. 1-6. Doi: 10.1109/CONCAPAN.2018.8596448 [ Links ]
C, Birdsall; A, Langdon. Plasma Physics via Computer Simulation, Series in Plasma Physics and Fluid Dynamics, CRC Press, Boca Raton FL, 2004. Doi: 10.1201/9781315275048 [ Links ]
R, Carboni; F, Frutos-Alfaro. PCell: a 2D program for visualizing convective plasma cells, Computing in Science and Engineering 6(2014) no. 4, 101-104. Doi: 10.1109/MCSE.2004.18 [ Links ]
R, Carboni; F, Frutos-Alfaro. Computer simulation of convective plasma cells, Journal of Atmospheric and Solar-Terrestrial Physics, 67(2015), no. 17-18, 1809-1814. Doi: 10.1016/j.jastp.2004.11.014 [ Links ]
W,M,Elsasser. Hydromagnetic dynamo theory, Reviews of Modern Physics 28(1956) no. 2, 135-163. Doi: 10.1103/RevModPhys.28. 135 [ Links ]
A, Jafari; E, Vishniac. Introduction to magnetic reconnection, arXiv, 2018. http://arxiv.org/abs/1805.01347 [ Links ]
E,N,Parker. Kinematical hydromagnetic theory and its application to the low solar photosphere, Astrophysical Journal, 138(1963), 552-575. Doi: 10.1086/147663 [ Links ]
V,S, Titov; G, Hornig; P, Démoulin. Theory of magnetic connectivity in the solar corona, Journal of Geophysical Research: Space Physics 107(2002), no. A8, 1-13. Doi: 10.1029/2001JA000278 [ Links ]
A, ud-Doula; J,O, Sundqvist; S,P, Owocki; V, Petit; R,H,D, Townsend. First 3D MHD simulation of a massive-star magnetosphere with application to Hα emission from θ 1 Ori C, Monthly Notices of the Royal Astronomical Society 428(2013) no. 3, 2723-2730. Doi: 10.1093/mnras/sts246 [ Links ]
N,O,Weiss.The Expulsion of magnetic flux by eddies, Proceedings of the Royal Society A (1966), 310-328. Doi: 10.1098/rspa.1966.0173 [ Links ]
Received: August 07, 2020; Revised: October 22, 2020; Accepted: October 30, 2020