SciELO - Scientific Electronic Library Online

vol.27 issue1Backward bifurcation in neutrophil-pathogen interactionModeling voting dynamics in a two-party system author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.27 n.1 San José Jan./Jun. 2020 


Dengue model with early-life stage of vectors and age-structure within host

Modelo de dengue con etapa temprana en vectores y estructura de edad en el huésped

Fabio Sanchez1 

Juan G. Calvo2 

1University of Costa Rica, CIMPA, School of Mathematics, San José, Costa Rica;

2University of Costa Rica, CIMPA, School of Mathematics, San José, Costa Rica;


We construct an epidemic model for the transmission of dengue fever with an early-life stage in the vector dynamics and age-structure within hosts. The early-life stage of the vector is modeled via a general function that supports multiple vector densities. The basic reproductive number and vector demographic threshold are computed to study the local and global stability of the infection-free state. A numerical framework is implemented and simulations are performed.

Keywords: dengue fever; epidemic models; mathematical modeling; vectorborne diseases; age-structured model.


Se construye un modelo epidémico para la dinámica de transmisión de la fiebre del dengue con etapa temprana de vida en los vectores y estructura de edad en las clases de los huéspedes. La etapa de vida temprana del vector, se modela a través de una función general que admite múltiples densidades de vectores. El número reproductivo básico y vector de umbral demográfico, se calculan para estudiar la estabilidad local y global del estado libre de infección. Se implementa además un marco numérico y se realizan simulaciones.

Palabras clave: dengue; modelos epidémicos; modelizaje matemático; enfermedades vectoriales; modelos con estructura de edad.

Mathematics Subject Classification: 93A30, 92B99, 37N25

Ver contenido complete en PDF.


We thank the Research Center in Pure and Applied Mathematics and the Mathematics Department at Universidad de Costa Rica for their support during the preparation of this manuscript. The authors gratefully acknowledge institutional support for project B8747 from an UCREA grant from the Vice Rectory for Research at Universidad de Costa Rica.


F, Brauer; C, Castillo-Chavez; A, Mubayi; S, Towers. Some models for epidemics of vector-transmitted diseases, Infect. Dis. Model. 1(2016), no. 1, 79-87. Doi: 10.1016/j.idm.2016.08.001 [ Links ]

Centers for Disease Control and Prevention. Dengue, ]

L, Esteva; C, Vargas. Analysis of a dengue disease transmission model, Math. Biosci. 150 (1998), no. 2, 131-151. Doi: 10.1016/S0025-5564(98)10003-2 [ Links ]

L, Esteva; C, Vargas. A model for dengue disease with variable human population, J. Math. Biol. 38(1999), no. 3, 220-240. Doi: 10.1007/s002850050147 [ Links ]

Z, Feng; J,X, Velasco-Hernández. Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35(1997), no. 5, 523-544. Doi: 10.1007/s002850050064 [ Links ]

D, J, Gubler. Resurgent vector-borne diseases as a global health problem, Emerging Infect. Dis. 4(1998), no. 3, 442-450. Doi: 10.3201/eid0403.980326 [ Links ]

E, Harris; E, Videa; L, Pérez; E, Sandoval; Y, Téllez; M,L, Pérez; R, Cuadra; J, Rocha; W, Idiaquez; R,E, Alonso; M,A, Delgado; L,A, Campo; F, Acevedo; A, Gonzalez; J,J, Amador; A, Balmaseda. Clinical, epidemiologic, and virologic features of dengue in the 1998 epidemic in Nicaragua, Am. J. Trop. Med. Hyg. 63(2000), no. 1-2, 5-11. Doi: 10.4269/ajtmh.2000.63.5 [ Links ]

C,A, Manore; K,S, Hickmann; S, Xu; H,J, Wearing; J,M, Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theor. Biol. 356(2014), 174-191. Doi: 10.1016/j.jtbi.2014.04.033 [ Links ]

D, Murillo; S, Holechek; A, Murillo; F, Sanchez; C, Castillo-Chavez. Vertical transmission in a two-strain model of dengue fever, Letters in Biomathematics 1(2014), no. 2, 249-271. Doi: 10.1080/23737867.2014.11414484 [ Links ]

F, Sanchez; L, Barboza; D, Burton; A, Cintrón-Arias. Comparative analysis of dengue versus chikungunya outbreaks in Costa Rica, Journal Ricerche di Matematica 67(2018), no. 1, 163-174. Doi: 10.1007/s11587-018-0362-3 [ Links ]

F, Sanchez; M, Engman; L, Harrington; C, Castillo-Chavez. Models for dengue transmission and control, in: A, Gumel; C, Castillo-Chavez ; D,P, Clemence; R,E, Mickens. (Eds.) Mathematical studies on human disease dynamics. Emerging paradigms and challenges (Snowbird, Utah, 2005), Contemp. Math. 410(2006), 311-326. Doi: 10.1090/conm/410/07734 [ Links ]

F, Sanchez; D, Murillo; C, Castillo-Chavez. Change in host behavior and its impact on the transmission dynamics of dengue, in: R, P, Mondani. (Ed.) BIOMAT 2011, World Scientific, Singapore, 2012, pp. 191-203. Doi: 10.1142/9789814397711_0013 [ Links ]

Received: August 07, 2019; Revised: August 26, 2019; Accepted: September 18, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License