Mathematics Subject Classification: Primary 22E46, 53C35, Secondary 57S20.
[24]Ver contenido completo en pdf
Artículo
Characterization of bmo using wavelets through triebellizorkin spaces
Caracterización de bmo usando ondículas por medio del espacio de triebel-lizorkin
1Departamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresa- riales, Universidad Centroccidental Lisandro Alvarado. Barquisimeto, Venezuela. E-Mail: jorgehernandez@ucla.edu.ve
In the present article it is presented a characterization of all those func- tions in the space of bounded mean oscillation functions, BM O, in terms of an appropriate wavelet, using an isomorphism between the aforemen- tioned space and the homogeneous space of Triebel-Lizorkin F˙ 0,2. In ad- dition, a new inequality that involves the vector inequality of the maximal function of Hardy-Littlewood is proved.
Keywords: BMO function space; Triebel-Lizorkin’s homogeneous space; wavelets
En el presente artículo se presenta una caracterización de todas aque- llas funciones pertenecientes al espacio de oscilación media acotada, BM O, en términos de una apropiada ondícula, usando un isomorfismo entre el mencionado espacio de funciones y el espacio homogéneo de Triebel-Lizorkin F˙ 0,2. Además, se prueba una versión nueva que involucra la desigualdad v∞ectorial de la función maximal de Hardy-Littlewood.
Palabras clave: espacio de funciones de oscilación media acotada; espacio homogéneo de Triebel-Lizorkin; ondículas
Mathematics Subject Classification: Primary 22E46, 53C35, Secondary 57S20.
[24]Ver contenido completo en pdf
Acknowledgments
The author thanks to the Council for Scientific, Humanistic and Technological Development (CDCHT) of Universidad Centroccidental Lisandro Alvarado, and especially to Dr. Ventura Echandía Dean of the School of Sciences of the Fac- ulty of Sciences of the Central University of Venezuela for his teachings and contributions.
References
Fefferman, C. (1971) “Characterizations of bounded mean oscillation”, Bulletin of the American Mathematical Society 17(4): 587-588. [ Links ]
Fefferman, C.; Stein, E.M. (1971) “Some maximal inequalities”, Acta Mathematica 129: 107-115. [ Links ]
Frazier, M.; Jawerth, B. (1990) “A discrete transform and descomposition of distribution spaces”, Journal of Functional Analysis 93(1): 34-170. [ Links ]
Frazier, M.; Jawerth, B. (1985) “Decomposition of Besov spaces”, Indiana University Mathematics Department 34(4): 777-779. [ Links ]
Frazier, M.; Jawerth, B.; Weiss, G. (1991) Littlewood-Paley Theory and the Study of Function Spaces. Conference Board of the Mathematical Sciences, Estados Unidos. [ Links ]
García, J.; Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related Topics. North Holland. [ Links ]
Han, Y.; Lu, G.(2010) “Some recent works on multiparameter Hardy space theory and discrete Littlewood-Paley analysis”, Trends in Partial Differen- tial Equations, ALM 10: 99-191. [ Links ]
Hernández, E.; Weiss, G. (1996) A First Course on Wavelets. CRC Press, Estados Unidos. [ Links ]
John, F.; Nirenberg, L. (1961) “On functions of bounded mean oscillation”, Communications on Pure and Applied Mathematics 14: 415-426. [ Links ]
Peetre, J. (1975) “On spaces of Triebel-Lizorkin type”, Arkiv för Matematik 13(1-2): 123-130. [ Links ]
Rudin, W. (1976) Functional Analysis. McGraw-Hill Publishing Company. [ Links ]
Torchinski, A. (1986) Real-Variable Methods in Harmonic Analysis. Aca- demic Press, Estados Unidos. [ Links ]
Triebel, H. (2008) “Local means and wavelets in function spaces”, Banach Center Publications 79(1): 215-234. [ Links ]
Wojtaszczyk, P. (1997) A Mathematical Introduction to Wavelets. Cam- bridge University Press, Londres. [ Links ]
Received: November 09, 2017; Revised: June 02, 2018; Accepted: November 07, 2018