SciELO - Scientific Electronic Library Online

 
vol.26 issue1Hermite-hadamard inequalities type for raina’ fractional integral operator using η−convex functionsEstimation of stochastic volatility models via auxiliary particles filter author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.26 n.1 San José Jan./Jun. 2019

http://dx.doi.org/10.15517/rmta.v26i1.35516 

Artículo

Characterization of bmo using wavelets through triebellizorkin spaces

Caracterización de bmo usando ondículas por medio del espacio de triebel-lizorkin

Jorge Eliécer  Hernández Hernández1 

1Departamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresa- riales, Universidad Centroccidental Lisandro Alvarado. Barquisimeto, Venezuela. E-Mail: jorgehernandez@ucla.edu.ve

Abstract

[11]

In the present article it is presented a characterization of all those func- tions in the space of bounded mean oscillation functions, BM O, in terms of an appropriate wavelet, using an isomorphism between the aforemen- tioned space and the homogeneous space of Triebel-Lizorkin F˙ 0,2. In ad- dition, a new inequality that involves the vector inequality of the maximal function of Hardy-Littlewood is proved.

Keywords: BMO function space; Triebel-Lizorkin’s homogeneous space; wavelets

Resumen

[15]

En el presente artículo se presenta una caracterización de todas aque- llas funciones pertenecientes al espacio de oscilación media acotada, BM O, en términos de una apropiada ondícula, usando un isomorfismo entre el mencionado espacio de funciones y el espacio homogéneo de Triebel-Lizorkin F˙ 0,2. Además, se prueba una versión nueva que involucra la desigualdad v∞ectorial de la función maximal de Hardy-Littlewood.

Palabras clave: espacio de funciones de oscilación media acotada; espacio homogéneo de Triebel-Lizorkin; ondículas

Mathematics Subject Classification: Primary 22E46, 53C35, Secondary 57S20.

[24]

Ver contenido completo en pdf

Acknowledgments

The author thanks to the Council for Scientific, Humanistic and Technological Development (CDCHT) of Universidad Centroccidental Lisandro Alvarado, and especially to Dr. Ventura Echandía Dean of the School of Sciences of the Fac- ulty of Sciences of the Central University of Venezuela for his teachings and contributions.

References

Fefferman, C. (1971) “Characterizations of bounded mean oscillation”, Bulletin of the American Mathematical Society 17(4): 587-588. [ Links ]

Fefferman, C.; Stein, E.M. (1971) “Some maximal inequalities”, Acta Mathematica 129: 107-115. [ Links ]

Frazier, M.; Jawerth, B. (1990) “A discrete transform and descomposition of distribution spaces”, Journal of Functional Analysis 93(1): 34-170. [ Links ]

Frazier, M.; Jawerth, B. (1985) “Decomposition of Besov spaces”, Indiana University Mathematics Department 34(4): 777-779. [ Links ]

Frazier, M.; Jawerth, B.; Weiss, G. (1991) Littlewood-Paley Theory and the Study of Function Spaces. Conference Board of the Mathematical Sciences, Estados Unidos. [ Links ]

García, J.; Rubio de Francia, J.L. (1985) Weighted Norm Inequalities and Related Topics. North Holland. [ Links ]

Han, Y.; Lu, G.(2010) “Some recent works on multiparameter Hardy space theory and discrete Littlewood-Paley analysis”, Trends in Partial Differen- tial Equations, ALM 10: 99-191. [ Links ]

Hernández, E.; Weiss, G. (1996) A First Course on Wavelets. CRC Press, Estados Unidos. [ Links ]

John, F.; Nirenberg, L. (1961) “On functions of bounded mean oscillation”, Communications on Pure and Applied Mathematics 14: 415-426. [ Links ]

Peetre, J. (1975) “On spaces of Triebel-Lizorkin type”, Arkiv för Matematik 13(1-2): 123-130. [ Links ]

Rudin, W. (1976) Functional Analysis. McGraw-Hill Publishing Company. [ Links ]

Torchinski, A. (1986) Real-Variable Methods in Harmonic Analysis. Aca- demic Press, Estados Unidos. [ Links ]

Triebel, H. (2008) “Local means and wavelets in function spaces”, Banach Center Publications 79(1): 215-234. [ Links ]

Wojtaszczyk, P. (1997) A Mathematical Introduction to Wavelets. Cam- bridge University Press, Londres. [ Links ]

Received: November 09, 2017; Revised: June 02, 2018; Accepted: November 07, 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License