SciELO - Scientific Electronic Library Online

vol.26 issue1Characterization of bmo using wavelets through triebellizorkin spaces author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.26 n.1 San José Jan./Jun. 2019 


Hermite-hadamard inequalities type for raina’ fractional integral operator using η−convex functions

Desigualdades de tipo hermite-hadamard para el operador integral de raina usando funciones η−convexas

Jorge E. Hernández H.1 

Miguel Vivas-Cortez2 

1Departamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empre- sariales, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela. E-Mail:

2Escuela de Ciencias Físicas y Matemática, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador (PUCE), Sede Quito, Ecuador. E-Mail:



In the present work, it is obtained some results concerning the integral inequality of Hermite-Hadamard, and others related to it, using η convex functions and the fractional integral operator defined by R.K. Raina.

Keywords: Hermite-Hadamard inequality; η convex functions; fractional integral operator




En el presente trabajo se encuentran resultados concernientes a la desigualdad integral de Hermite-Hadamard, y otras relacionadas con esta, usando funciones η convexas y el operador integral fraccional definido por R.K. Raina.

Palabras clave: desigualdad de Hermite-Hadamard; funciones η convexas; operadores integrales fraccionarios

Mathematics Subject Classification: 26D10, 26A33, 26A51.


Ver contenido completo en pdf.


The authors wish to thank the Council of Scientfic, Humanistic and Technological Development (Consejo de Desarrollo Científico, Humanístico y Tecnológico - CDCHT) of the Centroccidental University Lisandro Alvarado (Venezuela) and the Research Directorate (Dirección de Investigación of the Pontifical Catholic University of Ecuador for the technical support provided in the preparation of this article, attached to the project called Fractional Integral Inequalities for 􀀀convex functions.

Additionally, they thank the referees assigned for the evaluation of the article and the editorial team of the prestigious Revista de Matemática: Teoría y Aplicaciones - CIMPA (Costa Rica).


Agarwal, R.P.; Luo, M-J.; Raina, R.K. (2016) “On Ostrowski type inequalities”, Fasciculi Mathematici 56(1): 5-27. [ Links ]

Bai, R.; Qi, F.; Xi, B. (2013) “Hermite-Hadamard type inequalities for the m− and (α, m)−logarithmically convex functions”, Filomat 27(1): 1-7. [ Links ]

Dragomir, S.S.; Pecaric, J.; Persson; L. (1995) “Some inequalities of Hadamard type”, Soochow Journal of Mathematics 21(3): 335-341. [ Links ]

Dragomir, S.S.; Pearce, C.E.M. (2002) Selected Topics on Hermite- Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University. [ Links ]

Gordji, M.E.; Delavar, M.R.; Dragomir, S.S. (2015) “Some inequality re- lated to η-convex function”,Preprint,RGMIAResearchReportCollection. [ Links ]

Eshaghi, M.; Dragomir, S.S.; Delavar, M.R. (2015) “An inequality related to η convex functions”, International Journal of Nonlinear Analysis and Applications 6(2): 26-32. [ Links ]

Hadamard, J. (1893) “Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann”, Journal de Mathéma- tiques Pures et Appliquées 58: 171-216. [ Links ]

Iqbal, M.; Iqbal, M.; Nazeer, K. (2015) “Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals”, Bul- letin of the Korean Mathematical Society 52(3): 707-716. [ Links ]

Khan, M.A.; Khurshid, Y.; Ali, T. (2017) “Hermite-Hadamard inequality for fractional integrals via η convex functions”, Acta Mathematica Uni- versitatis Comenianae 86(1): 153-164. [ Links ]

Latif, M.A.; Alomari, M. (2009) “On Hadmard type inequalities for h- convex functions on the co-ordinates”, International Journal of Mathemat- ical Analysis 3(33): 1645-1656. [ Links ]

Özdemir, M.E.; Akdemir, A.O.; Set, E. (2016) “On (h, m) Convexity and Hadamard Type Inequalities”, Transylvanian Journal of Mathematics and Mechanics 8(1): 51-58. [ Links ]

Raina, R.K. (2005) “On Generalized Wright’s Hypergeometric Func- tions and Fractional Calculus Operators", East Asian Mathematics Journal 21(2): 191-203. [ Links ]

Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. (2013) “Hermite- Hadamard’s inequalities for fractional integrals and related fractional in- equalities”, Mathematical and Computer Modelling 57(9-10): 2403-2407. [ Links ]

Set, E.; Çelik, B.; Akdemir, A.O. (2017) “Some new Hermite-Hadamard type inequalities for quasi-convex functions via fractional integral opera- tor”, in A.O. Akdemir; A. Ekinci; I. Han; E. Set; F. Dadasoglu; K. Karagoz & A. Oztekin(Eds.) American Institute of Physics Conference Proceed- ings, AIP Publishing, Antalya, Turkey: 1-8. [ Links ]

Received: November 03, 2017; Accepted: October 20, 2018

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License