SciELO - Scientific Electronic Library Online

vol.58 issue4Dinámica del manglar en el complejo lagunar de Cispatá (Caribe colombiano) en los últimos 900 añosComparación temporal de la composición y zonación de organismos en el intermareal rocoso del Parque Nacional Isla del Coco, Pacífico de Costa Rica author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Rev. biol. trop vol.58 n.4 San José Dec. 2010


Urban vegetation change after a hundred years in a tropical city (San José de Costa Rica)

Julián Monge-Nájera & Gabriela Pérez-Gómez

Laboratorio de Ecología Urbana, Vicerrectoría de Investigación, Universidad Estatal a Distancia, 474-2050 San Pedro de Montes de Oca, San José, Costa Rica;,

Dirección para correspondencia


Urban vegetation is of key importance because a large proportion of the human population lives in cities. Nevertheless, urban vegetation is understudied outside central Europe and particularly, little is known about the flora of tropical Asian, African and Latin American cities. We present an estimate of how the vegetation has changed in the city of San José, Costa Rica, after about one century, with the repeat photography technique (based on a collection of 19th and early 20th century photographs by José Fidel Tristán and others) and with data from the Costa Rican National Herbarium. We found little vegetation change in the landscape of San José during the 20th century, where a total of 95 families and 458 species were collected in the late 19th and early 20th century. The families with most species were Asteraceae, Fabaceae, Poaceae, Lamiaceae, Euphorbiaceae, Solanaceae, Cyperaceae, Acanthaceae, Malvaceae, Piperaceae and Verbenaceae. Similar results have been found in Europe, where the number of plant species often is stable for long periods even when the individual species vary. Rev. Biol. Trop. 58 (4): 1367-1386. Epub 2010 December 01.

Key words: Urban flora, effects of urbanization, city landscape, photographic comparison, species list.


La vegetación urbana es de vital importancia ya que una proporción importante de la población humana vive en ciudades. Sin embargo, esta vegetación es poco estudiada fuera del centro de Europa y se sabe particularmente poco sobre la flora urbana de las ciudades tropicales de Asia, África y América Latina. Aquí presentamos una estimación de cómo ha cambiado la vegetación en la ciudad de San José, Costa Rica, durante un siglo, con la técnica de la fotografía repetida (sobre la base de una colección de fotografías del siglo XIX y principios del siglo XX hechas por José Fidel Tristán y otros) y con los datos del Herbario Nacional de Costa Rica. Encontramos pocos cambios en el paisaje de San José durante el siglo XX. En la ciudad se recolectaron 95 familias y 458 especies entre finales del siglo XIX y principios del XX. Las familias con más especies fueron Asteraceae, Fabaceae, Poaceae, Lamiaceae, Euphorbiaceae, Solanaceae, Cyperaceae, Acanthaceae, Malvaceae, Piperaceae y Verbenaceae. Los resultados son similares a los de Europa, donde el número de especies de plantas a menudo es estable durante largos períodos, aunque las especies individuales varíen.

Palabras clave: Flora urbana, efectos de la urbanización, paisaje de ciudad, comparación fotográfica, lista de especies.

Urban vegetation has mostly been studied in central Europe, where about 50% of species are alien, half of them introduced before the 15th century. Despite the heavy traffic among European cities, five centuries have not been enough to homogenize their flora: the communities of species introduced after the year 1500 are characteristic of each city (Frank et al. 2008).

For animals, which particular species occur in cities is predicted by the "environmental filtering model" that in turn is based on plants. The model states that (1) there is natural selection of species living in urban ecosystems, (2) plants define key habitat characteristics and (3) habitats define which animals can live in the city (Williams et al. 2009). Generally, moderate urbanization produces some increase in plant biodiversity but is deleterious for invertebrates and mammals. A high level of urbanization is correlated with fewer species of plants, invertebrates, amphibians, reptiles, birds and mammals, possibly because humans willingly introduce plant species, but not animals, to their gardens (McKinney 2008).

Outside central Europe, urban vegetation is understudied but there are some recent data from Plymouth, England, where alien species increase with urbanization (Kent et al. 2001). Also in England, gardens in Sheffield have a total of 1 166 plant species (70% alien) and twice the garden size means 25% more species. In these gardens there are 63% biennials/perennials, 18% shrubs, 10% annuals and 8% trees (Smith et al. 2006).

In Anglosaxon and French North America, there is a surprising scarcity of recent studies on urban biotas, but some work has been done. In the city of Halifax (Nova Scotia, Canada), soil moisture and light determine which species are present. Taxa adapted naturally to rock, grassland and flooded habitat find an analog habitat in the city and thrive (Lundholm & Marlin 2006).

The New York metropolitan region has 556 woody species and non-native invasive species are becoming more common (Clemants & Moore 2004). In the Pelham Bay Park, New York City, native species went from 72% to 60% and 26% of natives disappeared in 50 years (especially herbaceous and meadow-type plants, DeCandido 2004).

Even though recent studies are scarce, a meta-analysis found 79 studies of species richness with geographic data for New York City; of these, 17 studies found a decrease in species richness, six an increase and three found no change. However, all studies reported an increasing number of exotic species (Puth & Burns 2008).

Tropical cities are in areas of high biodiversity but little is known about Asian and especially African cities regarding urban flora. In Latin America the situation is better but worldwide no floral lists exist for the 50 most populated cities (Clemants 2002). In Jinan City, China, a methodological comparison found that gradient analysis from the urban center to the fringe gives better estimates of the urban flora than the traditional block-area analysis (Kong & Nakagoshi 2005). In Taipei, green areas have 164 tree species (few shared among sites) and large evergreen native species dominate. Larger parks have higher richness, more landscape fidelity to the original vegetation, and more rare and endemic species (Jim & Chen 2007). In Africa, the urban areas of the Nile Delta (Egypt) have vegetation that is mainly correlated with moisture, pH, fertility and texture gradients, but plants always occupy sites similar to their natural habitats (Shaltout & El-Sheikh 2002).

Latin America has a long history of scientific study of urban biota, particularly the plants and there are several recent studies from México, Peru, Brazil, Chile and Argentina.

In the city of Ensenada, Mexico, there are 161 species, 61% non-native (Garcillán et al. 2009). In Mexico City, trees are stressed from dry wind and unfavorable water flow caused by the pavement (Barradas 2000).

Brazil has the largest urban forest in world (Tijuca: 3 300 hectares) but it is being stressed by roads because roads are surrounded by invasive species that burn easily. The fires in turn open adjacent areas to more invasive vegetation and the damage spreads (Matos et al. 2002). There are very few studies of plants that grow on walls but in Jundiai, Brazilian, walls have a biodiversity of 28 species (dos Reis et al. 2006).

Normally, satellites are not used to study urban vegetation but in Arequipa, Peru, satellite images show that desert vegetation is being lost because of urban expansion (Polk et al. 2005). However, only ground work can reliably identify species and this kind of work has shown that temperate South America is not different from North America and Europe: at least half of the plant species in the Argentinean cities of Mendoza and Rosario are introduced. In Luján de Cuyo, Mendoza, 61 species were identified: 69% introduced (Méndez 2005). The vacant lots of Rosario each have one dominant species, a few abundant species and many rare species. Therophytes predominate and the proportions of indigenous and introduced species are similar (Franceschi 1996).

Chile is the Latin American country with the largest number of recent studies. Synanthropic communities in an urban footpath of Valdivia represents six associations and two communities (Finot & Ramírez 1998). In Concepción, green areas are dominated by nonnative ornamental species (Paucharda et al. 2006). The distribution of urban vegetation reflects social inequalities. In Santiago, poor areas can have ten times less plant cover than rich neighbourhoods (Hernández 2008), similar to other countries (Pedlowski et al. 2002). However, workshops in poor areas of cities can result in an improvement of their vegetation (Garzón et al. 2004).

In Costa Rica, there is a long history of study of urban plants that began with the National Museum’s collection efforts in the late 19th century, but little has been published. Méndez & Fournier (1980) and Monge-Nájera et al. (2002a,b) studied the lichens and their relationship with air pollution. The use of European lichens proved succesful when they were transplanted to this Tropical city (Grüninger & Monge-Nájera 1988). Francisco Fallas made checklists and abundance estimates of urban herbs in the late 1970’s but to our knowledge he did not publish them. The program "Costa Rica: Jardín Botánico de América Tropical" produces manuals and labels for urban vegetation ( and there is a program to provide urban parks with butterflies and their host plants (

The biodiversity in patches of urban vegetation can be surprinsingly high, at least in Costa Rica. For example, after 50 years, in only one hectare of urban vegetation in San José, there are 432 plant species (Di Stéfano et al. 1995, Nishida et al. 2009), a full new lichen family with a novel symbiotic lifestyle (Eremithallus costaricensis; Lücking et al. 2008), 200 butterfly species (Nishida et al. 2009) and a new species of Hymenoptera, Meteorus oviedo (Shaw & Nishida 2005).

We present an estimate of how the vegetation has changed in the city of San José, Costa Rica, after about one century, with a technique called repeat photography. We do not know of repeat photography studies on urban Costa Rican vegetation of San José, but the technique was used in Costa Rica by Horn (1989) to assess changes in the páramo habitat.

Materials and methods

We used a collection of photographs taken in the late 19th and early 20th centuries from the José Fidel Tristán Fernández Collection in the Archivo Nacional de Costa Rica and others reproduced by Leiva (2004). The sites were re-photographed on December 11, 2008 with a Nikon Coolpix 8800 camera (8 megapixels; Fig. 1). The repeat photography technique, developed in 1880 (Webb et al. 2010) is good for detailed analysis (Hendrick & Copenheaver 2009) and is cost- effective (Robert et al. 2010). We used digital repeat photography, which is fast, detailed and reliable; can be stored for future corroboration and comparison; includes rich data that may become useful in the future; and can classify and measure information automatically (Crimmins & Crimmins 2008).

We re-photographed nine sites (exact year of original photograph included when known): Site 1 Catedral Metropolitana Street: 0 Avenues: 2-4 (1896); Site 2 Catedral Metropolitana St. 0 Av. 0-2 (c. 1910); Site 3 Kiosco Parque Morazán St. 5-7 Av. 3 (1914); Site 4 Colegio de Señoritas St. 3-5 Av. 4-6 (1914); Site 5 Paseo Colón St. 36 Av. 0, looking east (1899); Site 6 Paseo Colón St. 36 Av. 0 looking west; Site 7 Antigua Casa Presidencial St. 15 Av. 7; Site 8 Estación del Ferrocarril al Atlántico St. 21-23 Av. 3; Site 9 Hospital de Niños St. 20 Av. 0.

We calculated % cover by clipping and weighing sections from photographs printed on standard bond paper; for example, if the clippings from buildings represented 20 % of the total weight of the photograph, we recorded that buildings represented 20% of the image. This technique is compared with others by Monge Nájera et al. (2002b).

We also present an analysis of plants collected in cantón de San José from 1885 through 1945 by the Museo Nacional staff (Base de Datos, Herbario Nacional, updated to April 13, 2009).


After about a century, the main change in San José city photographs is the much larger number of people. The reduction in vegetation affects grasses, shrubs and trees, but is small; the increase in buildings, streets, vehicles, sidewalks, lamps and signs is also small (Fig. 2).

A total of 95 families and 458 species were collected in the late 19th and early 20th century.

The families with most species were Asteraceae, Fabaceae, Poaceae, Lamiaceae, Euphorbiaceae, Solanaceae, Cyperaceae, Acanthaceae, Malvaceae, Piperaceae and Verbenaceae (Appendix 1).


Repeat photography was used in Costa Rica by Horn (1989) to assess changes in the paramo habitat (she found very little change) but we were unable to find a similar study of urban vegetation. Nevertheless, studies about plant biodiversity after long periods suggest that our results are not unusual. For example, after 50 years, Brussels has the same total number of plant species that it had in 1940, albeit the individual species change and the same applies to other areas in much longer time spans (Chocholouškováa & Pyšek 2003). We cannot make a comparison of species from circa 1900 to circa 2000 in San José because urban vegetation has rarely been collected in recent decades.

The increase in human presence in the city landscape is explained by the population growth of downtown San José or Cantón Central (from about 30 000 when the first photographs used in this study were taken circa 1900 to 356 000 when the sites were rephotographed in 2009; see: Centro Centroamericano de Población and Instituto Nacional de Estadística y Censos 2002). The small increase in the number of vehicles is an underestimation: the 2008 photographs were purposefully taken in low traffic periods to obtain a better view of the scenes.

Central European cities have a mean of 646 plant species/city and larger cities have more species (Pysek 1998), thus, considering that San José was and is a small city, the total of 458 species recorded is within the expected range.

Successful urban plants tend to belong to species adapted to natural habitats with strong sunlight, abundant nitrogen and low water levels (Shaltout & El-Sheikh 2002, Chocholouškováa & Pyšek 2003, Lundholm & Marlin 2006), so the presence of many Asteraceae, Fabaceae, Poaceae, Lamiaceae, Euphorbiaceae, Solanaceae, Cyperaceae, Acanthaceae, Malvaceae, Piperaceae and Verbenaceae is not surprising. Many of the plant species in Costa Rica are introduced (Chacón & Saborío 2005) and here again the situation is similar to that in other countries.

Urban trees mitigate global warming (Abdollahi et al. 2000, McPherson et al. 2008), significantly reduce urban heat islands (Huang et al. 2009) and can sequester about 100kg of air pollutants per hectare of urban forest (Vilela-Lozano 2004). Furthermore, urban vegetation protects many species in the five kingdoms (Dana et al. 2002, Smith et al. 2006), including valuable rare species (Maurer et al. 2000, Williams et al. 2009). For these and other reasons, the study and management of urban vegetation is of great importance.

Genetic diversity is low in urban plants and they are less prepared to cope with environmental change (Knapp et al. 2009), so periodic monitoring is needed to conserve original species as well as any others in need of protection (Godefroid 2001). Citizens can learn to effectively take advantage of urban vegetation (Garzón et al. 2004) and to recognize historical changes in the city scene (e.g. the repeat photography groups in, not only for cultural reasons, but also to influence the administration of the urban flora by local governments.

Future studies of urban vegetation in San José could investigate these hypotheses:

- Floristic composition results from the interaction of human density, water availability, temperature, altitude and soil (Dana et al. 2002, Chocholouškováa & Pyšek 2003, Fanelli & Tescarollo 2006, Altobelli et al.2007).

- Ecological succession starts with ruderal annual plants, followed by perennials (Prach et al. 2001).
- Alien species benefit more from human activity (Niggermann 2009).
- With global warming, species adapted to colder climate will become less common and vice versa.


We thank Hubert Blanco (Archivos Nacionales), Colegio Superior de Señoritas, María José Guerra Araus (Herbario Nacional), Sergio Aguilar, Sergio Quesada, Karla Vega, Andrea Sánchez and María Acuña for their assistance. We specially thank Sally P. Horn (University of Tennessee, Knoxville) for suggestions to improve the manuscript and for advice on repeat photography.


Abdollahi, K., Z. Ning & A. Appeaning. 2000. Global climate change and the urban forest. Franklin, California, USA.         [ Links ]

Altobelli, A., E. Bressan, E. Feoli, P. Ganis & F. Martini. 2007. Improving knowledge of urban vegetation by applying GIS technology to existing databases. Appl. Veget. Sci. 10: 203-210.         [ Links ]

Aparecida dos Reis, V., J.A Lombardi & R.A. Figueiredo. 2006. Diversity of vascular plants growing on walls of a Brazilian city. Urban Ecosyst. 9: 39-43.         [ Links ]

Barradas, V. 2000. Energy balance and transpiration in an urban tree hedgerow in Mexico City. Urban Ecosyst. 4: 55-67.         [ Links ]

Chacón, E. & G. Saborío. 2005. Sistema de Información de las Especies Invasoras en Costa Rica. Propuesta ante la OEA. Organización de Estados Americano (OEA), Washington, D.C. ( Downloaded June 1, 2010).         [ Links ]

Chocholoušková, Z. & P. Pyšek. 2003. Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeň. Flora- Morphology, Distribution. Functional Ecol. Plants 198: 366-376.         [ Links ]

Centro Centroamericano de Población & Instituto Nacional de Estadística y Censos. 2002. Costa Rica: estimaciones y proyecciones de población 1970-2100 actualizadas al año 2000 y evaluación del Censo 2000 y otras fuentes de información. Centro Centroamericano de Población & Instituto Nacional de Estadística y Censos, San José, Costa Rica.         [ Links ]

Clemants, S. 2002. A Short Bibliography of Urban Floras. Urban habitats 1: 1541-7115.         [ Links ]

Clemants, S. & G. Moore 2004. The Changing Flora of the New York Metropolitan Region. Urban Habitats 3: 192-210.         [ Links ]

Crimmins, M. & T. Crimmins. 2008. Monitoring Plant Phenology Using Digital Repeat Photography. Environ. Manage. 41: 1432-1009.         [ Links ]

Dana, E.D, S. Vivas & J.F. Mota. 2002. Urban vegetation of Almería City - a contribution to urban ecology in Spain. Landscape Urban Plann: 203-216.         [ Links ]

De Candido, R. 2004. Recent changes in plan species diversity in urban Pelham Bay Park, 1997-1998. Biol. Conserv. 120: 129-136.         [ Links ]

Di Stéfano, J.F., V. Nielsen, J. Hoomans & L.A. Fournier. 1995. Regeneración de la vegetación arbórea en una pequeña reserva forestal urbana del premontano húmedo, Costa Rica. Rev. Biol. Trop. 41:7-21.         [ Links ]

Fanelli, P. & A.Tescarollo. 2006. Ecological indicator applied to urban and suburban floras. Ecol. Indic. 6: 444-457.         [ Links ]

Finot, V. & C. Ramírez. 1998. Fitosociología de la vegetación ruderal de la ciudad de Valdivia (X Región-Chile). Studia Bot. 17: 69-86.         [ Links ]

Franceschi, E.A. 1996. The ruderal vegetation of Rosario City, Argentina. Landscape Urban Plann. 34: 11-18.         [ Links ]

Frank, A., M. La Sorte, P. McKinney, S. Klotz, G. Rapson, L. Celesti-Grapow & K. Thompson. 2008. Distance decay of similarity among European urban floras: the impact of anthropogenic activities on Biodiversity. Global Ecol. Biogeogr. 17: 363-371.         [ Links ]

Garcillán, P.P., J. Rebman & F. Casillas. 2008. Analysis of the non-native flora of Ensenada, a fast growing city in north western Baja California. Urban Ecosyst. 12: 449-463.         [ Links ]

Garzón, B., N. Brañes, M. Albés & A. Anuad. 2004. Vegetación tropical y habitat popular: el caso de San Miguel de Tucumán. Bol. Inst. Vivienda 18: 21-42.         [ Links ]

Godefroid, S. 2001. Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landscape Urban Plann. 52: 203-224.         [ Links ]

Grüninger, W. & J. Monge-Nájera. 1988. Use of the temperate lichen Hypogymnia physodes (Parmeliaceae) to valuate air pollution in the Tropics. Rev. Biol. Trop. 36: 545-547.         [ Links ]

Hendrick , L. & C. Copenheaver. 2009. Using Repeat Landscape Photography to Assess Vegetation Changes in Rural Communities of the Southern Appalachian Mountains in Virginia, USA. Mountain Res. Devel. 29: 21-29.         [ Links ]

Hernández P.H.J. 2008. La situación del arbolado urbano en Santiago. Revista de Urbanismo (Chile) ( Downloaded June 7, 2010).         [ Links ]

Horn, S. 1989. The Inter-American highway and human disturbance of páramo vegetation in Costa Rica. Yearbook of the Conference of Latin Americanist Geographers 15: 13-22.         [ Links ]

Huang, J., R. Wang, F. Li, W. Yang, C. Zhou, J. Jin & Y. Shi. 2009. Simulation of thermal effects due to different amounts of urban vegetation within the built-up area of Beijing, China. Int. J. Sustainable Dev. World Ecol. 16: 67-76.         [ Links ]

Jim, C.Y. & W. Chen. 2008. Pattern and divergence of tree communities in Taipei’s main urban green spaces. Landscape Urban Plann. 84: 312-323.         [ Links ]

Jiménez, H. 2010. Programa "Costa Rica: Jardín Botánico de América Tropical" ( Downloaded June 7, 2010).         [ Links ]

Kent, M., R.A. Stevens & L. Zhang. 1999. Urban plant ecology patterns and processes: a case study of the flora of the City of Plymouth, Devon, U.K. J. Biogeogr. 26: 1281-1298.

Knapp, S., I. Kühn, J. Stolle & S. Klotz. 2009. Changes in the functional composition of a Central European urban flora over three centuries. Perspectives in Plant Ecology, Evolution and Systematics. In Press (DOI: 10.1016/j.ppees.2009.11.001).         [ Links ]

Kong, F. & N. Nakagoshi. 2005. Spatial-temporal gradient of urban green spaces in Jinan, China. Landscape Urban Plann. 78: 147-164.         [ Links ]

Leiva C.A. (comp.). 2004. Costa Rica en fotografías antiguas. Jadine, San José, Costa Rica.         [ Links ]

Lücking, R., T. Lumbsch, J. Di Stefano-Gandolfi, D. Lizano, J. Carranza-Velázquez, A. Bernecker-Lücking, J. Chaves-Chaves & L. Umaña-Tenorio. 2008. Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremothallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica. Symbiosis 46: 161-170.         [ Links ]

Lundholm, J.T & A. Marlin. 2006. Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst. 9:139-159.         [ Links ]

McKinney, M. 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11:161-176.         [ Links ]

McPherson, E., J. Simpson, P. Peper & E. Aguaron. 2008. Urban Forestry and Climate Change. USDA Forest Service, Albany, California.         [ Links ]

Matos, S., C. Santos & D. Chevalier. 2002. Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosys. 6:151-161.         [ Links ]

Maurer, U., T. Peschel & S. Schmitz. 2000. The flora of selected urban land-use types in Berlin and Postdam with regard to nature conservation in cities. Landscape Urban Plann. 46: 209-215.         [ Links ]

Méndez, O. & L.A. Fournier. 1980. Los líquenes como indicadores de la contaminación atmosférica en el área metropolitana de San José, Costa Rica. Rev. Biol. Trop. 28: 31-39.         [ Links ]

Méndez, E. 2005. Flora y vegetación del centro urbano de Luján de Cuyo. Rev. FCA UNCuyo 37: 67-74.         [ Links ]

Monge-Nájera, J., M.I. González, M. Rivas & V.H. Méndez- Estrada. 2002a. Twenty years of lichen cover change in a tropical habitat (Costa Rica) and its relation with air pollution. Rev. Biol. Trop. 50: 309-319.         [ Links ]

Monge-Nájera, J., M.I. González, M. Rivas& V.H. Méndez- Estrada. 2002b. A new method to assess air pollution using lichens as bioindicators. Rev. Biol. Trop. 50: 321-325.         [ Links ]

Niggemann, M., J. Jetzkowitz, S. Brunzel, M. Wichmann & R. Bialozyt. 2009. Distribution patterns of plants explained by human movement behavior. Ecological Model. 220: 1339-1346.         [ Links ]

Nishida, K., I. Nakamura & C.O. Morales. 2009. Plants and butterflies of a small urban preserve in the Central Valley of Costa Rica. Rev. Biol. Trop. 57: 31-67.         [ Links ]

Paucharda, A., M. Aguayo, R. Peña & R. Urrutia. 2006. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción,Chile). Biol. Conser. 127: 272-281.         [ Links ]

Pedlowski, M., J. Corabi & N. Heynen. 2002. Urban forest and environmental inequality in Campos dos Goytacazes, Rio de Janeiro, Brazil. Urban Ecosyst. 6: 9-20.         [ Links ]

Polk, M., K. Young & K. Crews-Meyer. 2005. Biodiversity conservation implications of landscape change in an urbanizing desert of South western. Urban Ecosyst. 8: 313-334.         [ Links ]

Prach, K., P. Pyšek & M. Bastl. 2001. Spontaneous vegetation succession in human-disturbed habitats: A pattern across seres. Appl. Veg. Sci. 4: 83-88.         [ Links ]

Puth, L. & C. Burns. 2008. New York’s nature: a review of the status and trends in species richness across the metropolitan region. Diver. Distr. 15: 12-21.         [ Links ]

Pysek, P. 1998. Alien and Native Species in Central European Urban Floras: A Quantitative Comparison. J. Biogeogr. 25: 155-163.         [ Links ]

Shaltout, K.H. & M. El-Sheikh. 2002. Vegetation of the urban habitats in the Nile Delta region, Egypt. Urban Ecosyst. 6: 205-221.         [ Links ]

Shaw, S. & K. Nishida. 2005. A new species of gregarious Meteorus (Hymenoptera: Braconidae) reared from caterpillars of Venadicodia caneti (Lepidoptera: Limacodidae) in Costa Rica. Zootaxa 1028: 49-60.         [ Links ]

Smith, R., K. Thompson, J.G. Hodgson & P. Warren. 2006. Urban domestic gardens (IX): composition and richness of the vascular plant flora, and implications for native biodiversity. Biol. Conser. 129: 312-322.         [ Links ]

Vilela, J. 2004. Distribución del arbolado urbano en la ciudad de Fuenlabrada y su contribución a la calidad del aire. Estudios Territoriales 36: 419-427.         [ Links ]

Webb, R., D. Boyer & R. Turner. 2010. Repeat Photography: Methods and Applications in the Natural Sciences. Island, Washington, USA.         [ Links ]

Williams, N., M. Schwartz, P. Vesk, M. McCarthy, A. Hahs, S. Clemants, R. Corlett, R. Duncan, B. Norton, K. Norton & M. McDonnell. 2009. A conceptual framework for predicting the effects of urban environments on flora. J. Ecol. 97: 4-9.         [ Links ]

Correspondencia a: Julián Monge-Nájera & Gabriela Pérez-Gómez. Laboratorio de Ecología Urbana, Vicerrectoría de Investigación, Universidad Estatal a Distancia, 474-2050 San Pedro de Montes de Oca, San José, Costa Rica;,

Received 01-VI-2010. Corrected 28-VII-2010. Accepted 06-VIII-2010.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License