SciELO - Scientific Electronic Library Online

 
vol.35 issue4Residual lifespan estimation index in power transformers based on conditionConstruction hazardous waste in Costa Rica and its environmental impacts author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Tecnología en Marcha

On-line version ISSN 0379-3982Print version ISSN 0379-3982

Abstract

SOLIS-SALAZAR, Martín  and  MADRIGAL-SANABRIA, Julio. Una propuesta de aprendizaje automático para predecir la pobreza. Tecnología en Marcha [online]. 2022, vol.35, n.4, pp.84-94. ISSN 0379-3982.  http://dx.doi.org/10.18845/tm.v35i4.5766.

Debido a la alta tasa de errores de inclusión y exclusión de los métodos tradicionales (Proxy Mean Test) utilizados para la identificación de hogares en condición de pobreza y la selección de los beneficiarios de los programas de asistencia social, esta investigación analizó diferentes perspectivas para predecir hogares en condición de pobreza, utilizando un modelo de aprendizaje automático basado en XGBoost. Los modelos propuestos se compararon con métodos de referencia. Los datos utilizados fueron tomados de la encuesta de hogares del 2019 de Costa Rica. Los resultados mostraron que al menos uno de nuestros enfoques utilizando XGBoost dan el mejor balance entre el error de exclusión e inclusión. El mejor modelo se construyó utilizando XGBoost con un enfoque de clasificación.

Keywords : Aprendizaje automático; predicción de la pobreza; Proxy Mean Test.

        · abstract in English     · text in English     · English ( pdf )