SciELO - Scientific Electronic Library Online

vol.63 suppl.2Immune response of the Antarctic sea urchin Sterechinus neumayeri: cellular, molecular and physiological approachAntibacterial and antifungal activity of the starfish Oreaster reticulatus (Valvatida: Oreasteridae) and the sea urchins Mellita quinquiesperforata (Clypeasteroida: Mellitidae) and Diadema antillarum (Diadematoida: Diadematidae) from the Colombian Caribbean author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744


RUBILAR, Tamara; MERETTA, Pablo E.  and  CLEDON, Maximiliano. Regeneration rate after fission in the fissiparous sea star Allostichaster capensis (Asteroidea). Rev. biol. trop [online]. 2015, vol.63, suppl.2, pp.321-328. ISSN 0034-7744.

Many studies have focused on the regeneration rate of arms in Asteroidea but no studies have focused on the regeneration rate after fission. Allostichaster capensis is a fissiparous sea star with a wide range of distribution. In Golfo Nuevo (42°46’49’’ S - 64°59’ 26’’ W) sea stars undergo fission every spring and summer and regenerate the rest of the year. To analyze the regeneration rate, we conducted an experiment with sea stars collected just before fission. After sea stars underwent fission, the length of the three non-regenerating and the three regenerating arms were measured weekly. The arm length (regenerating and non-regenerating) was used in non-Linear Mixed Effect models in order to account for within-individual correlation in different models. The regenerating arms regenerate according to a Quadratic model, while the non-regenerating arms regenerate according to a linear model. In the regenerating arms, the regeneration rate was estimated to be 0.1 mm.week-1 and in the non-regenerating arms, the growth rate was 0.004 mm.week -1. Sea stars regenerate ca. 20 % of the arm in one month, and it takes about 5 months to be completely regenerated. At the beginning, the regeneration rate is fast generating the growth of the arms, once the pyloric caeca and gonads are present inside the arms the regeneration rate slows down probably due to allocation to gametes and pyloric caeca and arms. The factors that regulate the regeneration rate are unknown. However, food availability and energy storage seem to play an important role. Rev. Biol. Trop. 63 (Suppl. 2): 321-328. Epub 2015 June 01.

Keywords : Regeneration rate; Asteroidea; fission; Allostichaster capensis; mixed-model effects.

        · abstract in Spanish     · text in English     · English ( pdf )