Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Similars in SciELO
Share
Revista de Matemática Teoría y Aplicaciones
Print version ISSN 1409-2433
Rev. Mat vol.29 n.2 San José Jul./Dec. 2022
http://dx.doi.org/10.15517/rmta.v29i2.49254
Artículo
Grupos ortogonales sobre cuerpos de característica positiva
Orthogonal groups over fields of positive characteristic
1Columbia University, Department of Mathematics, New York, United States of America; rzhang@math.columbia.edu
Esta exposición examina la teoría de los grupos ortogonales y sus subgrupos sobre cuerpos de característica positiva, que recientemente se han utilizado como una herramienta importante en el estudio de las formas automórficas y la funcionalidad de Langlands. Presentamos la clasificación de grupos ortogonales sobre un cuerpo finito F utilizando la teoría de formas bilineales y formas cuadráticas en característica positiva. Usando el determinante y la norma del espinor cuando la característica de F es impar y usando la invariante de Dickson cuando la característica de F es par, también encontramos subgrupos especiales del grupo ortogonal.
Palabras clave: grupo ortogonal; característica positiva; forma bilineal; forma cuadrática; invariante de Arf; invariante de Dickson; núcleo espinorial
This exposition examines the theory of orthogonal groups and their subgroups over fields of positive characteristic, which has recently been used as an important tool in the study of automorphic forms and Langlands functionality. We present the classification of orthogonal groups over a finite field using the theory of bilinear forms and quadratic forms in positive characteristic. Using the determinant and spinor norm when the characteristic of F is odd and using the Dickson invariant when the characteristic of F is even, we also look at special subgroups of the orthogonal group.
Keywords: orthogonal group; positive characteristic; bilinear form; quadratic form; Arf invariant; Dickson invariant; spinorial kernel
Agradecimientos
Estas notas se basan en una charla impartida en el taller de Casa Matemática Oaxaca-Banff International Research Station (CMO-BIRS), «Teoría de números en América », en agosto de 2019. Agradecemos su apoyo, así como las discusiones con Lea Beneish, Michael Harris, Luis Lomelí y Alberto Mínguez. También agradecemos a los árbitros anónimos por sus útiles comentarios.
Referencias
C, Arf. Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I, J. Reine Angew. Math. 183 (1941), 148-167. Doi: 10.1515/crll.1941.183.148 [ Links ]
R, Baeza. Comparing u-invariants of fields of characteristic 2, Bol. Soc. Brasil. Mat. 13 (1982), no. 1, 105-114. Doi: 10.1007/BF02584739 [ Links ]
C, Chevalley. The Algebraic Theory of Spinors, Columbia University Press, New York, 1954. Doi: 10.7312/chev93056 [ Links ]
E,A,Connors. The structure of O'/Ω over local fields of characteristic 2, Proc. Amer. Math. Soc. 22 (1969), 596-599. Doi: 10.2307/2037439 [ Links ]
H, del Castillo. Langlands functoriality conjecture for SO* (2n) in positive characteristic, Ph.D. Thesis, Université Paris-Saclay; Pontificia Universidad Católica de Valparaíso, 2021. Available from: Link [ Links ]
L, Dickson. Linear Groups: With an Exposition of the Galois Field Theory, Dover Publications, Inc., New York, 1958. Doi: 10.5962/bhl.title.22174 [ Links ]
J, Dieudonné. Sur les Groupes Classiques, Hermann et Cie., Paris, 1948. [ Links ]
J, Dieudonné. Pseudo-discriminant and Dickson invariant, Pacific J. Math. 5 (1955), 907-910. Available from: Link [ Links ]
R, Dye. A geometric characterization of the special orthogonal groups and the Dickson invariant, J. London Math. Soc. (2) 15 (1977), no. 3, 472-476. Doi: 10.1112/jlms/s2-15.3.472 [ Links ]
Benedict, Gross; M, Reeder. From Laplace to Langlands via representations of orthogonal groups, Bull. Amer. Math. Soc. 43 (2006), no. 2, 163-205. Doi: 10.1090/S0273-0979-06-01100-1 [ Links ]
M, Kneser. Orthogonale Gruppen über algebraischen Zahlkörpern, J. Reine Angew. Math. 196 (1956), 213-220. Doi: 10.1515/crll.1956.196.213 [ Links ]
M, Kneser. Witts Satz über quadratische Formen und die Erzeugung orthogonaler Gruppen durch Spiegelungen, Math.-Phys. Semesterber. 17 (1970), 33-45. [ Links ]
M,A,Knus. Quadratic and Hermitian Forms over Rings, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 294, Springer-Verlag, Berlin, 1991, Doi: 10.1007/978-3-642-75401-2 [ Links ]
L,A,Lomelí. Functoriality for the classical groups over function fields, Int. Math. Res. Not. IMRN (2009), no. 22, 4271-4335. Doi: 10.1093/imrn/rnp089 [ Links ]
L,A,Lomelí. Rationality and holomorphy of Langlands-Shahidi L-functions over function fields, Math. Z. 291(2019), no. 1-2, 711-739. Doi: 10.1007/s00209-018-2100-7 [ Links ]
F, Lorenz; P, Roquette. Cahit Arf and his invariant, Mitt. Math. Ges.Hamburg 30 (2011), 87-126. Available from: Link [ Links ]
B, Pollak. 4-dimensional orthogonal groups over algebraic number fields, J. Reine Angew. Math. 211 (1962), 176-178. Doi: 10.1515/crll.1962.211.176 [ Links ]
B, Pollak. Orthogonal groups over global fields of characteristic 2, J. Algebra 15 (1970), no. 4, 589-595. Doi: 10.1016/0021-8693(70)90055-4 [ Links ]
M, Reeder. On the restriction of Deligne-Lusztig characters, J. Amer. Math. Soc. 20(2007), no. 2, 573-602. Doi: 10.1090/S0894-0347-06- 00540-6 [ Links ]
M, Suzuki. Group Theory. I, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 247, Springer-Verlag, Berlin-New York, 1982. [ Links ]
D, Taylor. The Geometry of the Classical Groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. [ Links ]
R, Wilson. The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag London, Ltd., London, 2009. Doi: 10.1007/978-1-84800-988-2 [ Links ]
Recibido: 26 de Noviembre de 2021; Revisado: 29 de Abril de 2022; Aprobado: 30 de Mayo de 2022