SciELO - Scientific Electronic Library Online

vol.65 issue1Sexual and vegetative propagation of the medicinal Mexican species Phyllonoma laticuspis (Phyllonomaceae)Immature stages of Amnestus rugosus (Hemiptera: Cydnidae) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744


ARIAS-TRINIDAD, Alfredo et al. Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil. Rev. biol. trop [online]. 2017, vol.65, n.1, pp.21-30. ISSN 0034-7744.

The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment. Rev. Biol. Trop. 65 (1): 21-30. Epub 2017 March 01.

Keywords : Azotobacter; Azospirillum; tropical grass; weathered petroleum; phytoremediation.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )