SciELO - Scientific Electronic Library Online

 
vol.72 issue1Environmental controls on bioluminescent dinoflagellate density, in Laguna Grande, Fajardo, Puerto RicoA response to: Evaluating the reliability of DNA Barcoding for Central American Pacific shallow water echinoderms identification author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Rev. biol. trop vol.72 n.1 San José Jan./Dec. 2024

http://dx.doi.org/10.15517/rev.biol.trop..v72i1.56175 

Artículo

Avian diversity in river levee forest: the effect of microscale heterogeneity

Diversidad de aves en bosques de albardón: el efecto de la heterogeneidad a microescala

Carolina-Antonella Brarda1  2 
http://orcid.org/0000-0002-0832-7679

Adriana-Silvina Manzano1  2 
http://orcid.org/0000-0002-6862-857X

Carlos-Ignacio Piña3  4 
http://orcid.org/0000-0002-6706-5138

Antonio-Esteban Frutos3  4 
http://orcid.org/0000-0001-5500-3637

1. Laboratorio de Herpetología, Centro de Investigación Científica y de Transferencia Tecnológica a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER). España 149 (E3105BWA), Diamante, Entre Ríos, Argentina; carolinabrarda@gmail.com, herpetologia@gmail.com

2. CIBTA. Facultad de Ciencia y Tecnología-Consejo Nacional de Investigaciones Científicas y Técnicas CONICET. España 149 (E3105BWA), Diamante, Entre Ríos, Argentina.

3. Laboratorio de Ecología Animal. Universidad Autónoma de Entre Ríos. Facultad de Ciencia y Tecnología. España 149 (E3105BWA), Diamante, Entre Ríos, Argentina; pina.carlos@uader.edu.ar, antoniofrutos.af@gmail.com (*Correspondence)

4. Centro de Investigación Científica y de Transferencia Tecnológica a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas CICYTTP (CONICET-Prov. ER-UADER). Laboratorio de Ecología Animal, España 149 (E3105BWA), Diamante, Entre Ríos, Argentina.

Abstract

Introduction:

Levee forests exhibit a vertical stratification that may contribute to structural complexity allowing a great diversity of birds to thrive on the islands. In deltaic ecosystems there is scarce or no data to prove it.

Objectives:

To assess variations in the composition of the bird community within levee forests.

Methods:

Two areas of protected wetlands belonging to the Paraná River Delta in Argentina were sampled for three years. A comparative analysis of richness, abundance, and diversity was performed in different levee forests using the point count method.

Results:

Three distinct types of levee forests -open, intermediate, and closed- were identified based on the structure of their vegetation, hosting a total of 85 bird species. Variation in avian community structure among forest types revealed greater diversity in open forests during winter (3.26 ± 0.13, P < 0.01) and spring (3.58 ± 0.05, P < 0.01), and greater richness in autumn (35.33 ± 3.01, P < 0.01). The closed forests exhibited increased diversity during autumn (3.16 ± 0.13, P < 0.05) and summer (3.24 ± 0.06, P < 0.05), along with elevated abundance in autumn (114 ± 13.70, P < 0.05) and richness in spring (39.17 ± 4.71, P = 0.01). Due to the evolutionary history between sites, significant variation was observed in the most recently created national park, influencing abundance in winter (141 ± 22.06, P < 0.01) and spring (176 ± 12.83, P < 0.01), as well as diversity in winter (3.25 ± 0.10, P < 0.01) and spring (3.50 ± 0.10, P < 0.01).

Conclusions:

The microhabitat in the different levee forests allows the birds to organize differently. Focusing on microspatial dynamics is key to a deep understanding of the biological processes within subtropical islands and to plan conservation strategies and demonstrate the transition of a recovering riparian forest towards its natural state, where the pulse of the river and the effect of seasonality do not stop operating.

Key words: microstructure; Ramsar site; bird community ecology; riparian environments; vegetation strata.

Resumen

Introducción:

Los bosques de albardón exhiben una estratificación vertical que puede contribuir en la complejidad estructural, permitiendo que una gran diversidad de aves prospere en las islas. En ecosistemas deltaicos hay escasos datos que lo demuestren.

Objetivos:

Evaluar las variaciones en la composición de la comunidad de aves dentro de los bosques de albardón.

Método:

Se muestrearon durante tres años, dos áreas protegidas de humedales pertenecientes al Delta del Río Paraná, Argentina. Se realizó un análisis comparativo de riqueza, abundancia y diversidad de aves en tres diferentes bosques de albardón, utilizando el método de conteo por puntos.

Resultados:

Tres distintos tipos de bosque de albardón -abiertos, intermedios y cerrados- fueron identificados con base en la estructura de su vegetación, hospedando un total de 85 especies de aves. La variación en la estructura de la comunidad de aves entre tipos de bosque revela mayor diversidad en bosques abiertos durante el invierno (3.26 ± 0.13, P < 0.01) y la primavera (3.58 ± 0.05, P < 0.01), y mayor riqueza en otoño (35.33 ± 3.01, P < 0.01). Los bosques cerrados exhibieron mayor diversidad en el otoño (3.16 ± 0.13, P < 0.05) y en verano (3.24 ± 0.06, P < 0.05), junto con elevada abundancia en otoño (114 ± 13.70, P < 0.05) y elevada riqueza en primavera (39.17 ± 4.71, P=0.01). Debido a la historia evolutiva entre sitios, se observó variación significativa en el parque nacional de más reciente creación, influyendo en la abundancia del invierno (141 ± 22.06, P < 0.01) y de la primavera (176 ± 12.83, P < 0.01), así como en la diversidad en el invierno (3.25 ± 0.10, P < 0.01) y en la primavera (3.50 ± 0.10, P < 0.01).

Conclusiones:

El microhábitat en los diferentes bosques de albardón permite a las aves organizarse diferencialmente. Enfocarse en la dinámica microespacial es clave para una comprensión profunda de los procesos biológicos dentro de las islas subtropicales, planificar estrategias de conservación y evidenciar la transición de un bosque ripario en recuperación hacia su estado natural, donde el pulso del río y el efecto de la estacionalidad no dejan de operar.

Palabras clave: microestructura; sitio Ramsar; ecología de comunidades de aves; ambientes riparios; estratos de vegetación.

Introduction

In South America, the Paraná River Delta is an important island and wetland ecosystem composed of groups of islands interconnected and separated by water courses. It is characterized by a high environmental heterogeneity driven by current fluvial activity, as well as historical components (geomorphology of the early Neogene, different flow intensities, marine ingressions, and Pleistocene aeolian processes). All these factors have generated a diverse and dynamic habitat structure, both at spatial and temporal scales. This system is in constant activity, with regular flood pulses of different magnitude and intensity that generate a macrosystem of wetlands in the lower Paraná River (Naiman et al., 2005; Neiff & Malvárez, 2004). These features depend on the water level at a given time and influence the island geomorphology and biology, contributing to the landscape heterogeneity (Beltzer & Quiroga, 2007; Lorenzón, 2014).

Islands comprising these wetland systems exhibit distinctive vegetation that colonizes the territory by seed dispersal in various ways. Seeds are dispersed by anemochory, endozoochory (internal dispersal by fauna), epizoochory (external dispersal by fauna), by certain non-standard dispersal vectors due to alternative morphologies of seed diaspores (Heleno & Vargas, 2015) and through hydrochory (through river courses) (Kubitzk & Ziburski, 1994). All these mechanisms operate together to generate the vegetation of the wetland system, which in turn is different from that of the continent.

Associated with the particularity of the vegetation of the wetland system, the bird communities in the floodplain of the Paraná River behave differently than those in other areas, such as higher topographic areas, which are not directly influenced by the river (Ronchi-Virgolini et al., 2011). Besides the environmental variability mediated by seasonality, there are also the temporal dynamics of the seasonal pulse (Lima et al., 2021; Ronchi-Virgolini et al., 2008; Tockner et al., 2000a). In fluvial forests, vertical stratification of the vegetation provides structural complexity, which allows the occurrence of greater bird richness, abundance and diversity than in the surrounding areas, as well as the provision of protection, nesting and feeding sources (Anjos et al., 2007; Di Giacomo & Contreras, 2002; Giraudo & Ordano, 2003; Lima et al., 2021).

Several studies exploring bird communities in fluvial systems have shown the impact of spatial heterogeneity of vegetation on avifauna. These investigations entailed comparisons of bird assemblages across diverse environmental units on levees, including wetlands, forests, and grasslands (Beltzer & Neiff, 1992; Berduc et al., 2015; Frutos et al., 2020a, Frutos et al., 2020b; Lorenzón et al., 2016; Lima et al., 2021; Ronchi-Virgolini et al., 2010; Ronchi-Virgolini et al., 2011; Ronchi-Virgolini et al., 2013; Rossetti & Giraudo, 2003). Additionally, studies specifically delved into the distinctions between bird communities in upland forests (located outside flood-prone areas) and levee forests, treating these as contrasting environmental units (Ronchi-Virgolini et al., 2011).

Spatial heterogeneity plays a crucial role in shaping bird communities. Changes in bird communities, such as population density, species richness and dominant species composition, have been attributed to variations in forest vegetation conditions, water supply to floodplains and the density of population in different areas of the landscape (Gureev et al., 2019). In addition to hydrological disturbances on floodplains, latitudinal changes along rivers coupled with local habitat characteristics contribute to shaping the conditions that influence bird to habitat affinities (Munes et al., 2015). The intrinsic characteristics of river microenvironments change along the water corridors and are not transferable between regions (Miller et al., 2004), highlighting the unique micro-environmental heterogeneity of each region. Different responses have previously been proposed in relation to the variation in bird assemblages for anthropically intervened riparian environments, depending on the changes generated in spatial heterogeneity (Hernández-Belloso et al., 2018; Martin & Possingham, 2005; Rannestad et al., 2015; Velásquez-Valencia, 2018).

Silvopastoral and agroforestry environments generate patches of dense vegetation with greater richness and diversity of species, such as those reported for Amazonian riparian systems (Velásquez-Valencia, 2018). On the contrary, livestock pressure would compete with bird resources in the lower strata, generating a decrease in bird species (seen in the Australian riparian system) (Martin & Possingham, 2005).

Some environments that have been recovered have exhibited greater associated heterogeneity, thus hosting the greatest diversity of birds, or have demonstrated greater richness and relative abundance. Reported examples include the Kilombero Valley in East Africa (following recent livestock removal) (Rannestad et al., 2015) and Spanish lake environments undergoing restoration (Hernández-Belloso et al., 2018).

Considering that levee forests differ in the structure and composition of the vegetation (Aceñolaza et al., 2005), we focus on evaluating the differences in the structure of the levee forest and how it would affect the bird communities of the Paraná basin. In this work, we focus on differences in bird assemblage between environments within an environmental unit, in our case the floodplain levee forest. We hypothesize that birds use the different levee types differently and that this variation in the use is reflected in the bird assemblage structure within each forest.

Materials and methods

Study area: The study sites included Wetlands in the Pre-Delta National Park (PDNP), Diamante, Entre Ríos, Argentina (32º 03’43” S & 60º38’39” W) (PDNP, 2022) and in the Islas de Santa Fe National Park (ISFNP), San Jerónimo, Santa Fe, Argentina (32°6’10.70”-32°19’42.18” S & 60°43’52.36”-60°36’7.42” W) (Fig. 1) (ISFNP, 2022). These wetland areas correspond to the Delta e Islas del Paraná ecoregion (Matteucci, 2012; Quintana & Bó, 2010). They conform to the Ramsar site ‘Paraná Delta,’ a globally significant wetland located in Argentina (Giacosa et al., 2019). Located in a transition segment in the Paraná River, it is the area where the delta system begins, and is influenced by the biota present in the previous section of this river, the segment called middle Paraná (Lorenzón et al., 2019; Nestler et al., 2007; Sabattini & Lallana, 2007).

Fig. 1 Map of the study area. The lower polygon represents the limit of the Islas de Santa Fe National Park (ISFNP) and the upper polygon represents the limit of the Pre-Delta National Park (PDNP). Points represent the vegetation sampling points and bird count points (OF= open forests, IF= intermediate forests, CF= closed forests). 

The Pre-Delta National Park (PDNP) covers 2 458 hectares of island area and has been under the jurisdiction of the National Parks Administration since 1992. This is the only IBA (Important Bird and Biodiversity Conservation Area) located in the Upper Delta, in the area called “Forests, prairies and meander floodplains” (Coconier & Di Giacomo, 2009). The Islas de Santa Fe National Park (ISFNP) was created in November 2010. It covers 4 096 hectares, including eight islands that have been under the jurisdiction of the National Parks Administration since 2010 (https://www.argentina.gob.ar/parquesnacionales).

Levee forests are located at the highest zone of the floodplain. They have characteristics due to their topographic position, susceptible to floods (Aceñolaza et al., 2004). These forests cover about 20 % of the island area (Borodowski, 2006), whereas the central zones of the islands hold marshes and ponds. In the Paraná Delta, levees are simple, low diversity and open canopy forests, composed of high colonizer trees dominated by Salix humboldtiana and Tessaria integrifolia, with possible occurrence of Albizia inundata, Erythrina crista-galli or Sapium haematospermum. There are mature and better preserved forests (of equal ages) with one or two vegetation strata composed of Nectandra falcifolia and Inga uraguensis, Vachellia caven, and Croton urucurana. There may also be Morus spp. and Ligustrum lucidum as invasive introduced species as a result of ornithochorous dispersal (Ronchi-Virgolini et al., 2010). These forests are complemented by an herb stratum, composed of short gramineous species and grasslands of different species, and a shrub stratum characterized by several vines, sapling and medium-sized trees of Myrsine laetevirens and Zanthoxylum fagara (Aceñolaza et al., 2004; Aceñolaza et al., 2005; Beltzer & Neiff, 1992).

Climate and biogeography: The climate is temperate/warm humid (Kottek et al., 2006). The annual average temperature is about 19 ºC and annual rainfall is ~900 mm, with warmer and rainier summer periods than in winter. Biogeographically, the subtropical biota reaches the temperate zone of the Paraná Delta through the Paraná River, which acts as a biological corridor of great latitudinal extension (Cabrera, 1994; Malvárez, 1999). Thus, the area holds floristic components of the Amazonian domain (with elements from the Paranaense province) and the Chaco domain (with elements from the Chaco, Pampean and Espinal provinces), both domains belonging to the Neotropical Region (Cabrera, 1994); fauna with components of the Mesopotamian District (Subtropical Domain, Guyana-Brazilian subregion) with influence of the Pampean District (Ringuelet, 1961), and overlap of three ornithogeographic zones: the Paranaense province (Forests district) and the Mesopotamian and Pampean provinces (Nores, 1987).

Experimental design for vegetation: The forest types were defined by visually determining the tree cover percentage (on a horizontal plane), in sampling units, following Matteucci & Colma (1982). The area of the vegetation sample points coincided with the area of the bird count points. All the studied forests were considered levee forests because they are present in the highest zone, on the island edges, within the floodplain, without discriminating between young or mature forests, with greater or lower susceptibility to hydrometric fluctuations (Neiff, 2005; Placci, 1994).

A total of 18 vegetation and bird communities sampling points were selected; they were determined according to the vegetation traits (physiognomic-structural categories). Six replicates homogeneously distributed in both national parks were established for each forest category (three replicates in each forest type for each park) (Fig. 1). Forest characterizations based on tree cover ranges were up to 30 % for open forests, between 30 % and 60 % for intermediate forests, and more than 60 % for closed forests (Symonds & Johnson, 2008) (Fig. 2). Percent cover of shrub and herb strata was also recorded, as well as height (cm) of herb stratum.

Fig. 2 Physiognomy of the different levee forests. A. Open forest. B. Intermediate forest. C. Closed forest. 

Experimental design for birds: Bird sampling was conducted twice in each season, in the same points used for vegetation, at 45-day intervals for three years (2014, 2015 and 2016) and under favorable climatic conditions for bird observation. Birds were counted using the point counting method. To ensure sample independence, distance between points was greater than 250 m. All the birds in the forest environment seen and heard at each point for ten minutes were recorded (Blake, 1992; Ronchi-Virgolini et al., 2011). The total sampling effort at each point was four hours throughout the entire sampling period. This means that in each type of forest, in each park, the total sampling effort during the three years was 12 hours (given the three counting points for each forest type located in each of the two parks). All the birds that made use of the habitat were recorded, except for those that were seen only flying over the area. The estimated radius of the count point was 75 m. Counts began at sunrise and continued for four hours, the period of greatest stability for bird detection (Huff et al., 2000; Ralph et al., 1996). On each visit, sampling order was shifted among points to reduce the effects associated with bird activity and time of the day (Verner & Milne, 1989). All the species were identified in situ (Narosky & Yzurieta, 2010) and then classified systematically according to SAAC (Remsen et al., 2022).

Sample processing: The bird community was analyzed for each season from the 18 samples homogeneously distributed between the different forest types in both national parks, using a balanced and complete sampling design (Quinn & Kough, 2002). The total observation time for each type of forest was 24 hours during the entire study period, contemplating all points between the two parks, with 6 hours allocated to each season. To obtain more representative estimations of the bird community, seasonal estimates made across three years were grouped in a single point; thus, each sample resulted in the sum of six (6) individual estimates made for each point.

Where P is the sampling point, i is each estimation of bird counts made from a seasonal sampling, and N is the number of terms of the sum or the total estimations throughout the sampling. Bird richness and abundance, species composition and diversity were determined to describe the community structure of each forest type. Diversity was calculated using the Shannon and Weaver diversity index (H´).

Statistical analysis: Composition and relative abundances of tree species were analyzed using an analysis of similarities (ANOSIM) (Clarke & Warwick, 2001) and a non-metric multidimensional scaling (NMDS) (McCune & Mefford, 1999), with the Vegan package (Oksanen, 2011), using the Bray Curtis dissimilarity index on a matrix of relative abundances. Differences in tree, shrub and herb cover among seasons and between sites, and physiognomic differences inherent to forests (forest types) were analyzed using the Kruskall-Wallis non-parametric test (α = 0.05).

The relationship between bird community structure (richness, abundance and diversity) and forest type and sites were evaluated using generalized linear models for each season (Supplementary Material SM1). The models were fitted with the error distribution assumed according to the nature of the data, considering under and/or overdispersion (Gaussian, Poisson and Negative Binomial). Assumptions were evaluated for each model with their residuals (homoscedasticity and normality of Gaussian distribution and under and/or overdispersion in Poisson or Negative Binomial distributions).

Models were selected using the Akaike Information Criteria, as recommended for small samples (AICc) (Burnham et al., 2011; Matthew & Moussalli, 2011). When the best model was not achieved, the multiple model inference (MMI) of those with a Δi < 2 (Matthew & Moussalli, 2011) was used to obtain the relative importance of each predictor variable. The software packages R Studio version 3.6.1 (R Core Team, 2019) and R-medic (Mangeaud & Elías-Panigo, 2018) were used. Response variables whose explanatory variables were statistically significant are reported in Table 2 and Table 3. The figures were done with package Ggplot2 and the editing was done with Corel Draw 2021.5 Licence Adriana Manzano.

Results

Vegetation structure: The analysis of tree composition and relative abundance using the similarity analysis (ANOSIM) and the multidimensional ordination (NMDS) allowed us to differentiate three groups of forests and to associate Tessaria integrifolia and Salix humboldtiana with open forests, Albizia inundata, Myrsine laetevirens, Sapium haematospermum, Enterolobium contortisiliquum, Inga uraguensis and Vachellia caven with intermediate forests, and Erythrina crista galli, Nectandra falcifolia, Croton urucurana and Ligustrus lucidum with closed forests (ANOSIM R = 0.59, P = 0.001; Fig. 3).

Fig. 3 Non-metric multidimensional scaling (NMDS) of relative abundance of tree species in 18 count points. In black empty symbols, points of the Pre-Delta National Park site; in black filled symbols, points of the Islas de Santa Fe National Park. Open, intermediate, and closed forests are represented by squares, circles and triangles, respectively. Red crosses symbols stand for the relative positions of the different tree species. Tes.int.: Tessaria integrifolia; Sal.hum.: Salix humboldtiana; Alb. inu.: Albizia inundata; Myr. lae.: Myrsine laetevirens; Sap. hae.: Sapium haematospermum; Ent. con.: Enterolobium contortisiliquum; Ing. ura.: Inga uraguensis; Vac. cav.: Vachellia caven; Ery. cri.: Erythrina crista galli; Nec. fal.: Nectandra falcifolia; Cro. uru.: Croton urucurana; Lig. luc.: Ligustum lucidum

Regarding vegetation cover, no seasonal variation was recorded in tree or shrub cover. The herb stratum showed variation in spring, with its cover being the highest of all seasons (H = 36.77, P < 0.001). The height of this stratum was lowest in winter and highest in spring (H = 29.74, P < 0.001), with no differences between autumn and summer. No differences in cover were detected in any stratum, showing homogeneity in the values of both sites (Fig. 4 and Fig. 5). Regarding the inherent levee forest structure, three physiognomies were detected in the levee forests: open forests (OF), intermediate forests (IF), and closed forests (CF), which were determined by the tree cover (H = 42.52, P < 0.001) and height of the herb stratum (H = 18.69, P < 0.001). In the OF, the lowest tree cover percentage and the highest herb height were recorded. In the IF, both variables had intermediate values, and in CF, the highest percentage of tree cover, and the lowest percentage of herb cover were recorded (Fig. 6.A and Fig. 6.D; Table 1). While tree cover and herb height determined three forest physiognomies, in IF shrub cover was the highest, with no differences between OF and CF (H= 34.71, P < 0.001). The OF herb stratum cover was the highest, with no differences between the IF and the CF (H = 6.97, P < 0.05) (Table 1) (Fig. 6B, Fig. 6C).

Table 1 Differences among vegetation strata with respect to seasons, sites and forest types. 

Dependent variable Explanatory variable Statistical (H) P
Tree cover Season 0.44 0.930
Shrub cover Season 0.01 0.990
Herbaceous cover Season 36.77 < 0.001*
Herbaceous height Season 29.74 < 0.001*
Tree cover Site 1.67 0.199
Shrub cover Site 3.61 0.060
Herbaceous cover Site 3.42 0.060
Herbaceous height Site 0.62 0.430
Tree cover Forest type 42.52 < 0.001*
Shrub cover Forest type 34.71 < 0.001*
Herbaceous cover Forest type 6.97 0.030 *
Herbaceous height Forest type 18.69 < 0.001*

Fig. 4 Seasonal changes in the cover of the different vegetation strata. A. Percentage of tree cover. B. Percentage of shrub cover. C. Percentage of herb cover. D. Height of herb stratum. 

Fig. 5 Differences in cover of vegetation strata between national parks. A. Percentage of tree over. B. Percentage of shrub cover. C. Percentage of herb cover. D. Height of herb stratum. 

Fig. 6 Intrinsic physiognomic differences among levee forests are determined by percentage of tree, shrub and herb cover, and height of herb stratum. Open forests (OF), intermediate jDifferentiation of shrub cover percentage. C. Differentiation of herb cover. D. Differentiation of herb stratum height (cm). 

The results of the Kruskall-Wallis tests are shown.

Bird community: The number of contacts with birds recorded amounted to 9 908, corresponding to 85 bird species belonging to 29 families and 13 orders (Table 3). In autumn, 37.61 % of variation in species richness was explained by physiognomic variables of levee forests (AICc = 104.50, w = 0.60), with OF having higher values than CF (P < 0.01). In spring, richness had the lowest value in PDNP and varied among forest types, with CF showing the lowest value and differing from OF and IF (P < 0.05). In summer, richness had the lowest value in PDNP and varied among forest types with differences between IF and CF. IF had higher richness than CF (P < 0.01). In winter, richness was similar among forest types (Table 2, Table 3, Fig. 8).

Table 2 Seasonal variation in bird richness, abundance and diversity, related to levee forest structure. 

Dependent Variable AICc delta Weight Coeficient Coef.Standard deviation Confidence interval p-value Null deviance Residual deviance Devianza Mean ± sd
Explanatory variable 2.50 % 97.50 %
Winter Richness MMI -0.344 0.235 PDNP site -0.842 0.153 0.175 - - - -
Autumn Richness 104.50 2 0.57 35.333 1.452 Open forests* 32.49 38.18 < 0.01 304.00 189.67 37.61 35.33 ± 3.01
        -6.167 2.053 Closed forests* -10.19 -2.14 < 0.01       29.17 ± 3.60
Spring Richness MMI     -0.518 0.192 Closed forests* -0.93 -0.11 0.01       39.17 ± 4.71
        -0.641 0.178 PDNP site* -1.02 -0.26 < 0.01       38.78 ± 3.89
Summer Richness MMI     -3.633 -5.674 1.506 1.506 Intermediate forests* Closed forest* -1.05 -1.11 -0.01 -0.06 < 0.05 < 0.05       35.17 ± 3.31 34.67 ± 3.20
Winter Abundance 160.30 ~2 0.59 -0.142 0.042 PDNP site* -0.26 -0.02 < 0.05 23.53 18.00 23.49 122 ± 12.38
      4.947 0.060 ISFNP site* 4.87 5.03 < 0.01       141 ± 22.06
Autumn Abundance MMI     -0.005 0.002 Closed forests* -0.01 0.00 < 0.05       114 ± 13.70
Spring Abundance 145.10 > 2 0.77 5.171 0.025 ISFNP site* 5.12 5.22 < 0.01 34.26 15.60 54.46 176 ± 12.83
        -0.160 0.037 PDNP site* -0.23 -0.09 < 0.01       150 ± 12.37
Summer Abundance MMI     -0.003 0.001 Intermediate forests* -0.01 0.00 < 0.05       126 ± 17.85
        -0.004 0.001 PDNP site* -0.01 0.00 < 0.01       122 ± 15.80
Winter Diversity -26.60 ~2 0.67 3.328 0.041 Open forests* 3.25 3.41 < 0.01 0.24 0.10 56.76 3.26 ± 0.13
        -0.157 0.050 Closed forests* -0.26 -0.06 < 0.01       3.11 ± 0.07
        3.328 0.041 ISFNP site* 3.25 3.41 < 0.01       3.25 ± 0.10
        -0.118 0.041 PDNP site* -0.20 -0.04 < 0.05       3.13 ± 0.11
Autumn Diversity MMI     -0.962 0.375 Closed forests* -1.73 -0.19 < 0.05     3.16 ± 0.13
        0.895 0.285 Closed forests in PDNP site* 0.27 1.52 < 0.01       3.18 ± 0.06
Spring Diversity -28.10 > 2 0.77 3.590 0.039 Open forest* 3.51 3.67 < 0.01 0.26 0.10 63.08 3.58 ± 0.05
        -0.122 0.048 Intermediate forests* -0.22 -0.03 < 0.05       3.40 ± 0.10
        -0.144 0.048 Closed forests* -0.24 -0.05 < 0.01       3.37 ± 0.14
        3.590 0.039 ISFNP site* 3.51 3.67 < 0.01       3.50 ± 0.10
        -0.143 0.039 PDNP site* -0.22 -0.07 < 0.01       3.36 ± 0.11
Summer Diversity MMI   -0.629 0.244 Closed forests* -1.15 -0.11 < 0.05   3.24 ± 0.06

Seasonal variation in the community attributes related to forests structure. MMI: Multiple Model Inference. PDNP: Pre-Delta National Park. ISFNP: Islas de Santa Fe National Park. AICc value (small samples), delta and weight of the best model, coefficient value and standard deviation, confidence interval and P of the explanatory variables (*significance).

Table 3 Systematic classification of bird species in each site, their richness and number of contacts of each one. 

Species Status ISFNP PDNP
Conservation Richnnes Number of Contacts Richnnes Number of Contacts
OF IF CF OF IF CF OF IF CF OF IF CF
Hydropsalis torquata* LC - - X - - 1 - - - X - - 1
Butorides striata LC - - - X - - 1 X X X 1 1 1
Columbina picui LC - X - - 2 - - X X - 2 4 -
Columbina talpacoti LC ­ X - - 1 - - X X X 5 1 2
Leptotila verreauxi LC - X X X 62 85 95 X X X 105 142 155
Patagioenas maculosa LC ­ X - - 1 - - - - - - - -
Patagioenas picazuro LC ­ X X X 39 53 61 X X X 60 75 74
Zenaida auriculata LC ­ X X X 33 44 24 X X X 28 17 9
Chloroceryle amazona LC X - X 1 - 1 - X - - 2 -
Chloroceryle americana LC X - X 2 - 2 X X - 1 3 -
Megaceryle torquata LC - X - X 1 - 1 - X - - 3 -
Coccycua cinérea* LC X X - 3 1 - X - - 1 - -
Coccyzus melacoryphus* LC - X X X 4 1 4 X X X 2 2 3
Guira guira LC ­ X X X 4 2 10 - X X 1 4 2
Tapera naevia* LC - X - - 1 - - X - - 2 - -
Rostrhamus sociabilis LC - X - - 1 - - - X X - 1 1
Rupornis magnirostris LC X X X 17 13 14 X X X 7 4 13
Caracara plancus LC ­ X X X 8 5 5 X X X 19 6 9
Aramus guarauna LC - - - X - - 1 - - - - - -
Aramides ypecaha LC - X X - 3 2 - - - - - -
Campylorhamphus trochilirostris LC X X X 1 6 1 X X X 6 4 5
Lepidocolaptes angustirostris LC ­ X X X 89 43 54 X X X 68 52 69
Microspingus melanoleucus LC - X X X 44 15 7 X X X 11 7 5
Saltator aurantiirostris LC Unk X X X 66 80 76 X X X 74 71 69
Saltator coerulescens LC X X X 124 162 134 X X X 126 114 125
Saltator similis LC - X - - 1 - - - - - - -
Paroaria capitata LC - X X X 45 26 45 X X X 22 5 8
Paroaria coronata LC - X X X 27 24 23 X X X 25 13 17
Poospiza nigrorufa LC - - X X - 2 2 X - X 3 - 2
Sicalis flaveola LC - X X X 6 9 2 X X X 4 8 4
Zonotrichia capensis LC - X X X 30 35 47 X X X 16 9 22
Spinus magellanicus LC - X X X 16 1 2 X X - 12 4 -
Asthenes pyrrholeuca** LC X X X 6 10 4 - - - - - -
Certhiaxis cinnamomeus LC X X - 2 2 - X - - 1 - -
Phacellodomus ruber LC X X X 139 111 156 X X X 148 127 134
Phacellodomus striaticollis LC - X X - 1 1 - - - - - - -
Synallaxis frontalis LC X X X 36 56 39 X X X 34 57 43
Limnoctites sulphuriferus LC X X X 1 2 4 - - - - - -
Furnarius rufus LC X X X 56 70 66 X X X 53 48 62
Progne tapera* LC X X X 38 14 18 X X X 35 24 19
Tachycineta leucorrhoa LC ­ X X X 55 31 17 X X X 27 13 16
Agelasticus cyanopus LC - X X X 3 8 5 X X - 2 2 -
Cacicus solitarius LC - X X X 4 17 5 X X X 14 9 23
Icterus pyrrhopterus LC - X X X 28 10 18 X X X 18 13 13
Agelaioides badius LC - X X X 52 54 39 X X X 26 39 23
Molothrus bonariensis LC X X X 7 4 5 X X X 9 7 1
Molothrus rufoaxillaris LC - X X X 13 16 8 X X X 10 12 8
Geothlypis aequinoctialis LC - X X X 1 1 2 X - X 2 - 1
Setophaga pitiayumi LC X X X 7 2 1 - X X - 2 1
Myiothlypis leucoblephara LC - - - - - - X X X 9 12 38
Polioptila dumicola LC X X X 63 105 90 X X X 45 38 49
Taraba major LC X X X 72 68 59 X X X 69 65 54
Thamnophilus caerulescens LC - X X - 9 8 X X X 3 6 12
Thlypopsis sordida LC - X X X 7 13 3 X X - 4 2 -
Thraupis sayaca LC - X X X 14 6 5 X X X 37 30 29
Turdus amaurochalinus LC - X X X 42 23 22 X X X 38 39 31
Turdus rufiventris LC - X X X 66 106 80 X X X 76 58 76
Troglodytes aedon LC X X X 30 10 9 X X X 20 14 7
Elaenia parvirostris LC - X X X 5 3 2 - X - - 1 -
Elaenia spectabilis LC X X X 1 10 6 X X X 3 5 4
Myiophobus fasciatus* LC ­ X X X 7 4 6 X X X 3 6 3
Pitangus sulphuratus LC X X X 64 53 55 X X X 47 39 31
Serpophaga griseicapilla LC - X X - 1 1 - X - - 3 - -
Serpophaga subcristata LC - X X X 30 20 7 X X X 9 9 15
Hemitriccus margaritaceiventer LC - X X X 11 21 12 X X X 2 2 11
Myiarchus swainsoni* LC - X X X 15 12 9 X X X 13 11 9
Camptostoma obsoletum LC - X X X 13 5 5 X X X 7 7 3
Myiodynastes maculatus* LC - X - X 7 - 1 X X X 15 5 3
Suiriri suiriri LC X X X 33 17 7 X X X 31 12 11
Tyrannus melancholicus* LC X X X 9 12 14 X X X 10 10 14
Tyrannus savana* LC - X X X 6 6 4 X X - 3 4 -
Machetornis rixosa LC - X X X 1 2 2 X - - 1 - -
Pachyramphus polychopterus* LC - X X X 33 33 29 X X X 22 19 22
Pachyramphus viridis LC - X - X 2 - - - X X - 3 1
Vireo olivaceus* LC X X X 54 46 44 X X X 21 21 22
Cyclarhis gujanensis LC X X X 50 47 37 X X X 32 48 44
Colaptes melanochloros LC - X X X 46 20 11 X X X 30 21 21
Melanerpes cactorum LC X X X 8 4 2 X X X 8 4 2
Melanerpes candidus LC ­ X X - 4 1 - - X - - 2 -
Picumnus cirratus LC X X X 30 18 21 X X X 14 16 21
Dryobates mixtus LC - X X X 35 19 20 X X X 29 21 32
Myiopsitta monachus LC X X X 6 21 21 X X X 14 43 35
Bubo virginianus LC - - X - - 5 - X - - 2 - -
Chlorostilbon lucidus LC Unk X X X 3 4 4 X X X 1 6 1
Hylocharis chrysura LC ­ X X X 19 25 15 X X X 11 16 10
76 72 71 1 864 1 770 1611 69 69 69 1 612 1 500 1 551

Bird abundance varied among forest types in autumn and summer. In autumn, CF was the least abundant, whereas in summer, IF was the least abundant (P < 0.05). In spring, as in winter, there was higher abundance in the ISFNP; the best model explained 54.46 % (AICc = 145.10, w = 0.80), and 23.49 % (AICc = 160.30, w = 0.60), respectively (Table 2, Table 3, Fig. 7, Fig. 8).

Fig. 7 Most abundant species in the levee forest physiognomies. The relative abundance (Pi) value for each species is shown on the bars. 

Fig. 8 Bird differences of richness, abundance and diversity among forest types in each season, in each park. A. Winter richness in PDNP. B. Winter richness in ISFNP. C. Winter abundance in PDNP. D. Winter abundance in ISFNP. E. Winter diversity in PDNP. F. Winter diversity in ISFNP. G. Autumn richness in PDNP. H. Autumn richness in ISFNP. I. Autumn abundance in PDNP. J. Autumn abundance in ISFNP. K. Autumn diversity in PDNP. L. Autumn diversity in ISFNP. M. Spring richness in PDNP. N. Spring richness in ISFNP. O. Spring abundance in PDNP. P. Spring abundance in ISFNP. Q. Spring diversity in PDNP. R. Spring diversity in ISFNP. S. Summer richness in PDNP. T. Summer richness in ISFNP. U. Summer abundance in PDNP. V. Summer abundance in ISFNP. W. Summer diversity in PDNP. X. Summer diversity in ISFNP. 

Bird diversity varied among forest types in all the seasons. In winter, 56.76 % of bird diversity variation was explained by an additive model including forests and sites (AICc = -26.6, w = 0.67), with differences between OF and CF types (P < 0.01), with OF being more diverse than CF. Regarding sites, ISFNP was more diverse than PDNP (P < 0.05). In autumn, the greatest diversity occurred in CF of PDNP (P = 0.004). In spring, the additive model of forests and sites explained 63.08 % of the variation (AICc = -28.10, w = 0.78), with diversity being highest in OF, intermediate in IF, and

lowest in CF (P < 0.05). According to the differences between sites, the ISFNP was the most diverse (P < 0.05). In summer, CF were the least diverse (P < 0.01) (Table 2, Table 3, Fig. 7, Fig. 8).

Discussion

Differences in vegetation structures (tree cover, shrub cover, herbaceous cover, and height) were found to be related to forest types mainly. The maximum shrub cover was recorded in Intermediate Forests (IF) and herb cover in Open Forests (OF) might be due to the greater light availability at the lower vegetation levels, reaching the lower forest strata due to the open canopy structure. OF might be considered edge environments favored by abiotic factors, especially light, which generates microclimatic variations that increase plant diversity (Granados-Sánchez et al., 2006; Nieves-Vele & Orellana-Peralta, 2018); in turn, these conditions are considered optimal for bird diversity (Baker et al., 2002; Rannestad et al., 2015). It is known that the development of the different vertical vegetation strata is enhanced when a disturbance of the forest canopy increases light availability (Anderson et al., 1978), with solar radiation being a factor determining the natural regeneration of forest vegetation (Viana & Jardim, 2013). In closed canopy forests, most of the light is absorbed by the tree canopy, reducing the development of the understory vegetation.

Our records of birds for the Delta wetland area were like those previously reported (eBird, 2020; Frutos et al., 2020a; Frutos et al., 2020b; Magnano et al., 2019; Ronchi-Virgolini et al., 2011; Rossetti & Giraudo, 2003). Overall, our results show that closed forests (CF) had the lowest richness, abundance and diversity values in their bird communities, whereas the highest values of richness, abundance and diversity were detected in OF. In a highly heterogeneous environment, niche availability is high; therefore, species richness is high while evenness is low, reducing diversity (Rosenzweig, 1995; Symonds & Johnson, 2008). Other authors argue that a greater niche availability drives greater evenness (Cotgreave & Harvey, 1994). However, community structure depends on landscape structure and spatial scale (Drobner et al., 1998; Horlent et al., 2003). Based on the results of our analyses of forest types and birds, we could suggest that a more heterogenous ambient could host more diversity, regardless of the bird community evenness. The richness record observed in the OF zone exemplifies this phenomenon, where the environmental heterogeneity manifests through variations in the vegetation strata. Similar results have been reported for the extensive floodplain of El Kilombero in Tanzania, a prominent wetland in East Africa (Rannestad et al., 2015). Further investigations emphasize the pivotal role played by edge habitats (Baker et al., 2002; Miller et al., 2004) in structuring avian communities. Considering that the levees of the OF zone host the most diverse avian communities and are near water, it is plausible to suggest that they function as well as exhibit characteristics emblematic of edge environments.

PD National Park has held protected status for several decades, while ISF National Park attained protection approximately a decade ago, resulting in the recent cessation of livestock farming activities (Frutos et al., 2018). Given the disturbing effects of recent livestock farming, it was expected that ISFNP would present some difference with respect to PDNP in terms of the lower vegetation strata, as suggested by Olff & Ritchie (1998) and Frutos (2018) as an effect associated with the intermediate disturbance hypothesis. Our findings show no differences in vegetation strata among the study sites, despite their different management histories. Nevertheless, the avian variation pattern proved to be non-uniform, which could be attributable to the influence of the characteristics of the area and seasonal fluctuations in vegetation. The recent cessation of livestock activities in ISFNP may have contributed to the proliferation of shrubs, resulting in subtly elevated coverage values at this location. Despite the increase in the prevalence of shrubs, typically correlated with higher avian diversity (Godoi et al., 2017; Martin, 1993), this trend was not conspicuously apparent. Considering potential seasonal disparities linked to abiotic/climatic factors in the coverage of lower strata (Zerda & Tiedemann, 2010), we could attribute the differences in the presence or absence of certain species in the parks. Examples include Phacellodomus striaticollis (insectivore of the shrub stratum), Asthenes pyrrholeuca (migratory insectivore of the shrub stratum), Saltator similis (fruit-insectivore of the low canopy), and Patagioenas maculosa (terrestrial granivore), all of which were notably absent in PNPD. This absence could be correlated with reduced habitat diversity in the understory and soil strata. This phenomenon could be correlated with an increased herbaceous vegetation density in the early stages of plant succession, a result of the absence of herbivory, particularly by livestock. In contrast, this form of herbivorous activity was prevalent in ISFNP in the past but has been systematically excluded from the site since its official designation as a national park, slightly over a decade ago. This exclusion creates more open space in the lower vegetation strata, potentially enhancing resource availability and eliciting corresponding avian responses to intermediate disturbance states in the environments (Frutos et al., 2018). In this context, the absence of Myiothlypis leucoblephara (insectivore inhabiting shrubbery and soil strata) in ISFNP can also be ascribed to a scenario favoring the occupation of other dominant species in the soil stratum, resulting in displacements of less dominant species within the assemblage. Additional species such as Limnoctites sulphuriferus, Aramus guarauna, and Aramides ypecaha (species associated with salt marshes) were absent in PDNP (yet present in ISFNP), potentially linked to the lower prevalence of salt marshes near the sampling points in this park. These absences are not of particular concern, as these species do not hold emblematic status for the region. According to the International Union for Conservation of Nature [IUCN] (2023), none of the species is classified as threatened, vulnerable, or endangered globally; instead, all are categorized as least concern. This aligns with the regional survey conducted by specialists from Aves Argentinas (2015).

However, we found differences in the arrangement of birds associated with parks, in terms of richness, abundance and diversity, with seasonal influence. This result suggests that despite past anthropogenic activities in the study sites, spatial heterogeneity of the forests in the floodplains is still high, possibly due to the dynamics contributed by the pulses. Thus, taking into account that the significance of the analysis that compared vegetation strata between sites was very close to the acceptance limit, it could be considered that the natural history of parks associated with livestock in natural riparian environments in some cases favor bird diversity (Frutos et al., 2020a; Frutos et al., 2020b; García et al., 2008; Martin & Mcintyre, 2007), however, it is not a necessary requirement to maintain a heterogeneous and beneficial structure for the dynamics of birds in riverine environments. Vegetation in the islands reveals ecological processes with several successional stages, caused by regimes of seasonal hydrological disturbances (Aceñolaza et al., 2005; Malvárez, 1999). Therefore, river wetlands are highly heterogeneous and maintain a high array of small habitats and microhabitats (Miller et al., 2004; Tavares et al., 2015).

The distinct resource offerings determined by the floristic composition in each type of forests and in each park were not analyzed to observe seasonal changes in that aspect. However, the analysis of vegetation cover in each forests type revealed variations throughout the seasons, particularly in the herbaceous layer (in terms of both coverage and height of the plants). Regarding the seasonal variation detected in the bird community, we can highlight that OF were not consistently able to distinguish themselves with a higher richness value in all seasons. Nevertheless, during the summer, lower abundance values were evident in the interior forests. Conversely, in autumn, there was a notable increase, particularly in PNPD. In CF, we found the lowest bird abundance value in autumn, and in general, the lowest value of diversity across seasons. There may be a relationship among the type of resources offered by the CF, a decrease of those resources in cool seasons and preferences for these resources by the species present there. To explain this relationship, a species composition analysis might be necessary to detect species preferences for different physiognomies (Horlent et al., 2003). We speculate, based on our results, about the existence of a dynamism that is not easy to identify in the arrangement of the community. This dynamism appears to be generated by the combination of seasonal and microspatial factors.

According to the classical niche theory, different species are associated with different habitat types; therefore, a few small and overlapping habitats may hold a high number of species (Allouche et al., 2012; Laanisto et al., 2013; MacArthur & MacArthur, 1961). Environmental heterogeneity is the degree of variation of the landscape components (physiognomy, structure, size, relative spatial arrangement) both at the spatial (different successional stages) and temporal levels (relationship between flooded areas and emergent areas in floodplains). It acts as a stabilizing mechanism that smooths the shift from stable to alternative states (van Nes & Scheffer, 2005) and determines the degree of habitat suitability for wild species, conditioning their richness, abundance and permanence in the area (Bó & Malvárez, 1999; Bó et al., 2010, Robinson et al., 2002). Therefore, environmental heterogeneity is a more important predictor of spatial variation of bird richness than the area covered by each habitat type (Lorenzón et al., 2016).

Beta diversity and species turnover from one area to another have a substantial influence on general species richness in a region (Ronchi-Virgolini et al., 2011; Vellend, 2001). The variation of the assemblage between sites, independently of the variation contributed by the physiognomies of the forests, could be related to the floristic composition. This variation would provide specific perches, shelters, or feeding sites for the birds and influence the decision to choose one site over another. But the seasonal differences in bird assemblage between sites also might be influenced by the migratory effect. Seasonal variations in the bird assemblages, caused by migrations, have been widely studied (Capllonch et al., 2008; Capllonch, 2018; Carvalho et al., 2013; Lima et al, 2021). The studied wetlands are in the fluvial biological corridor of the Paraná River. The relative position of the national parks studied in the great corridor and their proximity to migratory routes might be additional variables that influence the preference for one site or another and, therefore, in the arrangement of bird communities between sites.

In bird assemblages of highly heterogeneous riparian environments, seasonal changes are very evident (Lima et al, 2021; Lorenzón et al., 2019; Ronchi-Virgolini et al., 2013), which may explain the high seasonal variation of our results, regardless of microspatial variation. However, it should be noted that the migratory condition would not allow us to predict habitat selection (Horlent et al., 2003); therefore, the effect of migration on forests preference would rather be random.

The variation detected within levee forests shows that a deeper analysis is needed for differences in composition among vertical strata of the understory (De Stefano et al., 2012). Thus, the differential niche offer that optimizes resources for birds could be more clearly evidenced, considering that the turnover rate in plant composition is high in these environments. Therefore, deeper analyses of the differences in the bird assemblage using a functional classification criterion, i.e., guild, may reveal subtle aspects that are poorly detectable from a general perspective (Farías et al., 2007; Milesi et al., 2002; Ronchi-Virgolini et al., 2011; Root, 1967). Guild-based analyses would contribute more specific information to properly guide conservation efforts in these wetland environments, where variation at different scales is clear.

We conclude that there are at least three categories of levee forests on floodplains determined by differences in their vegetation cover, and that birds respond differentially to these conditions. These findings show the importance of habitat heterogeneity in river-associated island environments and highlight the importance of the microhabitat scale in the levees of floodplains. This allows us to focus on the underlying dynamics at this scale and understand the changes that occur in line with the evolutionary histories of the sites, and the recovery of environments, while also considering the changes associated with seasonal cycles. It is evident to us that, within these wetland landscapes, emphasis should not solely be placed on the mosaic at a macro scale. It is crucial to concentrate on microspatial dynamics to gain a more profound understanding of the concealed biological processes within the islands of these tropical and subtropical environments, where heterogeneity is apparent. We believe that considering the micro-scale environmental heterogeneity of levee forests in riparian environments is an important strategy for planning wetland conservation management. This study, in addition to evidencing and highlighting the existence of differential microhabitats within the levee forests, reflects upon the vegetation dynamics, bird behavior and the transition of the riparian forest in its recovering towards a more natural state, where the pulse of the river and the effect of seasonality do not stop operating.

Ethical statement: the authors declare that they all agree with this publication and made significant contributions; that there is no conflict of interest of any kind; and that we followed all pertinent ethical and legal procedures and requirements. All financial sources are fully and clearly stated in the acknowledgments section. A signed document has been filed in the journal archives.

Acknowledgments

We thank Malena Maroli, Arnaldo Mangeaud, Pablo Aceñolaza, Estela Rodríguez, Griselda Urich, and Virginia Piani for valuable debates and contributions to the elaboration of this manuscript. We are grateful to Leonardo Scarpa for field work. The project was funded through a Stimulus Scholarship for Scientific Vocations granted by the National Interuniversity Board, and PICT Piña 2014; PIDAC Piña 2015 and PUE 056-CONICET.

References

Aceñolaza, P. G., Povedano, H. E., Manzano, A. S., Muñoz, J. de D., Areta, J., & Ronchi-Virgolini, A. L. (2004). Biodiversidad del Parque Nacional Pre-Delta. En F. G. Aceñolaza (Ed.), Temas de la biodiversidad del litoral fluvial argentino (Miscelánea, pp. 169-184). Instituto Superior de Correlación Geológica. [ Links ]

Aceñolaza, P. G., Sione, W. F., Kalesnik, F., & Serafin, M. S. (2005). Determinación de unidades homogéneas de vegetación en el Parque Nacional Pre-Delta (Argentina). In F. G. Aceñolaza (Ed.), Temas de la biodiversidad del litoral fluvial argentino II (pp. 81-90). Instituto Superior de Correlación Geológica. [ Links ]

Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area-heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences, 109(43), 17495-17500. [ Links ]

Anderson, N. H., Sedell, J. R., Roberts, L. M., & Triska, F. J. (1978). The role of aquatic invertebrates in processing of wood debris in coniferous forest streams. American Midland Naturalist, 100(1), 64-82. [ Links ]

Anjos, L. D., Volpato, G. H., Lopes, E. V., Serafini, P. P., Poletto, F., & Aleixo, A. (2007). The importance of riparian forest for the maintenance of bird species richness in an Atlantic Forest remnant, southern Brazil. Revista Brasileira de Zoología, 24(4), 1078-1086. https://doi.org/10.1590/S0101-81752007000400027 [ Links ]

Aves Argentinas. (2015). Categorización de las aves de la Argentina según su estado de conservación. Ministerio de Ambiente y Desarrollo Sustentable de la Nación. https://avesargentinas.org.ar/sites/default/files/Categorizacion-de-aves-de-la-Argentina.pdfLinks ]

Baker, J., French, K., & Whelan, R. J. (2002). The edge effect and ecotonal species: bird communities across a natural edge in southeastern Australia. Ecology, 83(11), 3048-3059. https://doi.org/10.2307/3071841 [ Links ]

Beltzer, A. H., & Neiff, J. (1992). Distribución de las aves en el valle del río Paraná. Relación con el régimen pulsátil y la vegetación. Ambiente Subtropical, 2(1992), 77-102. [ Links ]

Beltzer, A. H., & Quiroga, M. A. (2007). Birds. In M. H. Iriondo, J. C. Paggi, M. J. Parma (Eds.), The middle Paraná River. limnology of a subtropical wetland (pp. 363-377). Springer. [ Links ]

Berduc, A., Lorenzón, R. E., & Beltzer, A. H. (2015). Patrones de diversidad de aves a lo largo de un gradiente latitudinal de bosques ribereños del río Paraná medio, Argentina. Revista Mexicana de Biodiversidad, 86(2015), 419-430. https://doi.org/10.1016/j.rmb.2015.04.003 [ Links ]

Blake, J. G. (1992). Temporal variation in point counts of bird in a lowland wet forest in Costa Rica. Condor, 94(1), 265-275. https://doi.org/10.2307/1368816 [ Links ]

Bó, R. F., & Malvárez, A. I. (1999). Las inundaciones y la biodiversidad en humedales: Un análisis del efecto de eventos extremos sobre la fauna silvestre. En A. I. Malvárez (Ed.), Tópicos sobre humedales subtropicales y templados de Sudamérica (pp. 140-161). Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y el Caribe. [ Links ]

Bó, R. F., Quintana, R.D., Courtalón, P., Astrada, E., Bolkovic, M. L., Lo Coco, G., Magnano, A. (2010). Efectos de los Cambios en el régimen hidrológico por las actividades humanas sobre la vegetación y la fauna silvestre del Delta del Río Paraná In D.E. Blanco & F. M. Méndez (Eds.) Endicamientos y terraplenes en el Delta del Paraná. Situación, efectos ambientales y marco jurídico (pp. 106). Secretaría de Ambiente y Desarrollo Sustentable de la Nación. [ Links ]

Borodowski, E. (2006). Álamos y sauces en el Delta del Paraná: Situación del sector y silvicultura. Jornadas Argentinas de Salicáceas, Argentina. [ Links ]

Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavorial Ecology and Sociobiology, 65(2011), 23-35. http://doi.org/10.1007/s00265-010-1029-6 [ Links ]

Cabrera, A. L. (1994). Regiones fitogeográficas argentinas. En W. F. Kugler (Ed.), Enciclopedia Argentina de agricultura y jardinería (pp. 1-85). ACME. [ Links ]

Capllonch, P. (2018). Un panorama de las migraciones de aves en Argentina. Hornero, 33(1), 1-18. [ Links ]

Capllonch, P., Ortiz, D., & Soria, K. (2008). Importancia del litoral fluvial argentino como corredor migratorio de aves. En F.G. Aceñolaza (Ed.), Temas de Biodiversidad del Litoral III (pp. 107-120). INSUGEO. [ Links ]

Carvalho, D., Horta, P., Raposeira, H., Santos, M., Luís, A., & Cabral, J. A. (2013). How do hydrological and climatic conditions influence the diversity and behavioural trends of water birds in small Mediterranean reservoirs? A community-level modelling approach. Ecological Modelling, 257, 80-87. https://doi.org/10.1016/j.ecolmodel.2013.02.012 [ Links ]

Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation (2nd Ed.). PRIMER-E Plymouth. [ Links ]

Coconier, E. G., & Di Giacomo, A. S. (2009). Áreas importantes para la conservación de las aves, América, Argentina. En C. Devenish, D. F. Díaz-Fernández, R. P. Clay, I. Davidson, & I. Yépez-Zabala (Eds.), Important bird areas Americas-priority sites for biodiversity conservation (pp. 59-70). BirdLife Conservation Series. [ Links ]

Cotgreave, P., & Harvey, P. H. (1994). Evenness of abundance in bird communities. Journal of Animal Ecology, 63(2), 365-374. https://doi.org/10.2307/5554 [ Links ]

De Stefano, K., Merler, J. A., Magnano, A. L., Nanni, A. S., Kandus, P., & Quintana, R. D. (2012). Relation between environmental heterogeneity and bird distribution and richness in two units of landscapes of the Delta of the Paraná, Argentina. Ornitologia Neotropical, 23(2), 169-184. [ Links ]

Di Giacomo, A., & Contreras, J. (2002). Consideraciones acerca de la diversidad de las aves en relación con el eje fluvial Paraguay-Paraná en Sudamérica. Historia Natural, 1(5), 23-29. [ Links ]

Drobner, U., Bibby, J., Smith, B., & Wilson, J. B. (1998). The relation between community biomass and evenness: What does community theory predict, and can these predictions be tested? Oikos, 82(2), 295-302. https://doi.org/10.2307/3546969 [ Links ]

eBird. (March, 2020). An online database of bird distribution and abundance. Cornell Lab of Ornithology, Ithaca, New York. http://www.ebird.org. [ Links ]

Farías, A. A., Marone, L., & Jaksic, F. M. (2007). Gremios. En F. M. Jaksic, & L. Marone (Eds.), Ecología de comunidades (pp. 145-336). Ediciones Universidad Católica de Chile. [ Links ]

Frutos, A. E., Ronchi-Virgolini, A. L., Giraudo, A. R., & Piña, C. I. (2020a). How does cattle raising affect bird communities in the delta of the Paraná River? Journal for Nature Conservation, 57(2020), 125872. https://doi.org/10.1016/j.jnc.2020.125872 [ Links ]

Frutos, A. E., Leiva, P. M. L., & Piña, C. I. (2020b). Bird community changes associated with cattle raising management in the delta forests of the Paraná River. Basic and Applied Ecology, 49(2020), 13-21. https://doi.org/10.1016/j.baae.2020.09.011 [ Links ]

Frutos, A. E. (2018). Efecto de la ganadería sobre ensambles de aves en bosques fluviales de la región del Delta del río Paraná (Tesis doctoral). Universidad Nacional del Litoral, Argentina. http://hdl.handle.net/11185/1156Links ]

García, C., Renison, D., Cingolani, A. M., & Fernández-Juricic, E. (2008). Avifaunal changes as a consequence of large scale livestock exclusion in the mountains of Central Argentina. Journal of Applied Ecology, 45(1), 351-360. https://doi.org/10.1111/j.1365-2664.2007.01388.x [ Links ]

Giacosa, B., Andelman, M., Balderrama, D., Matarasso, M. (2019). Plan de manejo del sitio Ramsar Delta e Islas del Paraná. Fundación Humedales, Wetlands International. [ Links ]

Giraudo, A., & Ordano, M. A. (2003). Patrones de diversidad de las aves del Iberá: variación de la riqueza, abundancia y diversidad entre localidades, regiones y hábitats. En B.B. Álavarez (Ed.), Fauna del Iberá (pp. 235-256). Universidad Nacional del Nordeste. [ Links ]

Godoi, M. N., Laps, R. R., Ribeiro, D. B., Aoki, C., & de Souza, F. L. (2017). Bird species richness, composition and abundance in pastures are affected by vegetation structure and distance from natural habitats: A single tree in pastures matters. Emu-Austral Ornithology, 118(2), 201-211. https://doi.org/10.1080/01584197.2017.1398591 [ Links ]

Granados-Sánchez, D., Hernández-García, M. A., López-Ríos, G. F. (2006). Ecología de las Zonas Ribereñas. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 12(1), 55-69. [ Links ]

Gureev, S. P., Nekhoroshev, O. G., & Mitchell, P. J. (2019). Spatial heterogeneity of bird communities in the natural landscapes of the Southern Taiga of the Ob-Yenisei Interfluve and the Chulym River Valley (Tomsk Region). IOP Conference Series: Earth and Environmental Science, 400, 012014. https://doi.org/10.1088/1755-1315/400/1/012014 [ Links ]

Heleno, R., & Vargas, P. (2015). How do islands become green? Global Ecology and Biogeography, 24, 518-526. https://doi.org/10.1111/geb.12273 [ Links ]

Hernández-Belloso, C. M., García-Prieto, J. C., Martín, R., de Tapia, R., García-Roig, M., Silla, F., Núñez-Nuñez, C., & Proal-Nájera, J. B. (2018). Efectos de la calidad del agua y la heterogeneidad del hábitat en las comunidades de aves de graveras restauradas y activas [Comunicación técnica escrita]. XIV Congreso Nacional del Medio Ambiente, Madrid, España. [ Links ]

Horlent, N., Juárez, M. C., & Arturi, M. (2003). Incidencia de la estructura del paisaje sobre la composición de especies de aves de los talares del noreste de la provincia de Buenos Aires. Ecología Austral, 13(2), 173-182. [ Links ]

Huff, M. H., Bettinger, K. A., Ferguson, H. L., Brown, M. J., & Altman, B. (2000). A habitat based point-count protocol for terrestrial birds, emphasizing Washington and Oregon. General Technical Report Pacific Northwest Research Station, Forest Service, U.S. Department of Agriculture. [ Links ]

Islands of Santa Fe National Park (ISFNP). (Septiembre, 2022). Parque Nacional Islas de Santa Fe. https://www.argentina.gob.ar/parquesnacionales/islasdesantafeLinks ]

International Union for Conservation of Nature (IUCN). (2023). The Red List of Threatened Species. https://www.iucnredlist.org/Links ]

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://doi.org/10.1127/0941-2948/2006/0130 [ Links ]

Kubitzki, K. & Ziburski, A. (1994). Seed dispersal in flood plain forests of Amazonia. Biotropica, 26(1), 30-46. http://www.jstor.org/stable/2389108Links ]

Laanisto, L., Tamme, R., Hiiesalu, I., Szava-Kovats, R., Gazol, A., & Pärtel, M. (2013). Microfragmentation concept explains non positive environmental heterogeneity-diversity relationships. Oecología, 171(1), 217-226. https://doi.org/10.1007/s00442-012-2398-5 [ Links ]

Lima, B. M., Ragusa-Netto, J., Donatelli, R. J., & Posso, S. R. (2021). Composition and spatio-temporal dynamics of aquatic bird community in humid areas of Alto Parana Atlantic Forest. Brazilian Journal of Biology, 84(25), e251438. https://doi.org/10.1590/1519-6984.251438 [ Links ]

Lorenzón, R. E. (2014). Respuestas biológicas de ensambles de aves no-paseriformes a la variación espacio-temporal de ambientes acuáticos a escalas local y regional en la planicie de inundación del Paraná Medio (Tesis Doctoral). Universidad Nacional del Litoral. [ Links ]

Lorenzón, R. E., Beltzer, A. H., Olguin, P. F., & Ronchi-Virgolini, A. L. (2016). Habitat heterogeneity drives bird species richness, nestedness and habitat selection by individual species in fluvial wetlands of the Paraná River, Argentina. Austral Ecology, 41(7), 829-841. https://doi.org/10.1111/aec.12375 [ Links ]

Lorenzón, R. E., Beltzer, A. H., Olguin, P. F., León, E. J., Sovrano, L. V., Antoniazzi, C. E., & Ronchi‐Virgolini, A. L. (2019). Temporal variation of bird assemblages in dynamic fluvial wetlands: seasonality and influence of water level and habitat availability. Revista de Biología Tropical, 67(6), 1131-1145. https://doi.org/10.15517/RBT.V67I6.36734 [ Links ]

MacArthur, R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42(3), 594-598. https://doi.org/10.2307/1932254 [ Links ]

Magnano, A. L., Fracassi, N. G., Nanni, A. S., & Quintana, R. D. (2019). Changes in bird assemblages in an afforestation landscape in the Lower Delta of the Paraná River, Argentina. Emu-Austral Ornithology, 2019, 1-9. https://doi.org/10.1080/01584197.2019.1581032 [ Links ]

Malvárez, A. I. (1999). El Delta del Río Paraná como mosaico de humedales. En A. I. Malvárez (Ed.), Tópicos sobre humedales subtropicales y templados de Sudamérica (pp. 35-53). Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y el Caribe (ORCYT). [ Links ]

Mangeaud, A., & Elías-Panigo, D. H. (2018). R-Medic: Un programa de análisis estadísticos sencillo e intuitivo. Revista Methodo, 3(1), 18-22. https://doi.org/10.22529/me.2018.3(1)05 [ Links ]

Martin, T. E. (1993). Nest predation among vegetation layers and habitat types: Revising the dogmas. The American Naturalist, 141(6), 897-913. https://doi.org/10.1086/285515 [ Links ]

Martin, T. G., & McIntyre, S. (2007). Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conservation Biology, 21(2), 504-514. https://doi.org/10.1111/j.1523-1739.2006.00624.x [ Links ]

Martin, T. G., & Possingham, H. P. (2005). Predicting the impact of livestock grazing on birds using foraging height data. Journal of Apllied Ecology, 42(2), 400-408. https://doi.org/10.1111/j.1365-2664.2005.01012.x [ Links ]

Matteucci, D. S., & Colma, A. (1982). Metodología para el estudio de la vegetación. Secretaría General de la Organización de los Estados Americanos. [ Links ]

Matteucci, D. S. (2012). Ecorregión delta e islas de los ríos Paraná y Uruguay. En J. Morello, S. D. Matteucci, & A. F. Rodríguez (Eds.), Ecorregiones y complejos ecosistémicos argentinos (pp. 447-488). Orientación Gráfica Editora. [ Links ]

Matthew, R. E. S., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65(2011), 13-21. https://doi.org/10.1007/s00265-010-1037-6 [ Links ]

McCune, B., & Mefford, M. J. (1999). PC-ORD. Multivariate analysis of ecological data , version 4.28. MjM Software Design, Gleneden Beach, OR. [ Links ]

Milesi, F. A., Marone, L., Lopez de Casenave, J., Cueto, V. R., & Mezquida, E. T. (2002). Gremios de manejo como indicadores de las condiciones del ambiente: un estudio de caso con aves y perturbaciones del hábitat en el Monte central, Argentina. Ecología Austral, 12(2), 149-161. [ Links ]

Miller, J. R., Dixon, M. D., & Turner, M. G. (2004). Response of avian communities in large-river floodplains to environmental variation at multiple scales. Ecological Applications, 14(5), 1394-1410. https://www.jstor.org/stable/4493659Links ]

Munes, E. C., Dixon, M. D., Swanson, D. L., Merkord, C. L., & Benson, A. R. (2015). Large, infrequent disturbance on a regulated river: response of floodplain forest birds to the 2011 Missouri River flood. Ecosphere, 6(11), 212. [ Links ]

Naiman, R. J., Décamps, H., & McClain, M. (2005). Riparia: Ecology, Conservation and Management of Streamside Communities. Elsevier. [ Links ]

Narosky, T., & Yzurieta, D. (2010). Guía para la identificación de las aves de Argentina y Uruguay. Vázquez Mazzini Editores. [ Links ]

Neiff, J. J., & Malvárez, A. I. (2004). Grandes humedales fluviales. In I. Malvárez & R. F. Bó (Eds.), Documentos del curso taller bases ecológicas para la clasificación e inventario de humedales en Argentina (pp. 77-85). [ Links ]

Neiff, J. J. (2005). Bosques fluviales de la cuenca del Paraná. En J. F. Goya, J. L. Frangi, & M. F. Arturi (Eds.), Ecología y manejo de los bosques de Argentina (pp. 1-26). Editorial de la Universidad Nacional de La Plata. [ Links ]

Nestler, J. M., Baigún, C. R., Oldani, N., & Weber, L. J. (2007). Contrasting the middle Paraná and Mississippi Rivers to develop a template for restoring large floodplain river ecosystems. International Journal of River Basin Management, 5(2), 305-319. https://doi.org/10.1080/15715124.2007.9635329 [ Links ]

Nieves-Vele, K. A., & Orellana-Peralta, D. G. (2018). Regeneración natural de especies leñosas en claros del Área de Bosque y Vegetación Protectora Aguarongo (ABVPA): influencia de factores abióticos e implicaciones para la restauración. Universidad del Azuay. [ Links ]

Nores, M. (1987). Zonas ornitogeográficas de Argentina. En T. E. Narosky, & D. Yzurieta (Eds.), Guía para la identificación de las aves de Argentina y Uruguay (pp. 295-305). Asociación Ornitológica del Plata. [ Links ]

Oksanen, J. (2011). Multivariate analysis of ecological communities. R: vegan tutorial. http://cran.rproject.orgLinks ]

Olff, H., & Ritchie, M. E. (1998). Effects of herbivores on grassland plant diversity. Trends in Ecology & Evolution, 13(7), 261-265. https://doi.org/10.1016/S0169-5347(98)01364-0 [ Links ]

Pre-Delta National Park (PDNP). (September, 2022). Parque Nacional Pre-Delta, Provincia de Entre Ríos. https://www.argentina.gob.ar/parquesnacionales/predeltaLinks ]

Placci, L. G. (1994). Estructura y funcionamiento fenológico en relación a un gradiente hídrico en bosques del Este de Formosa (Tesis doctoral). Universidad Nacional de La Plata. [ Links ]

Quinn, G., & Keough, M. (2002). Experimental design and data analysis for biologists. Cambridge University Press. [ Links ]

Quintana, R. D., & Bó, R. F. (2010). Caracterización general de la región del Delta del Paraná. En D. E. Blanco, & F. M. Méndez (Eds.), Endicamientos y terraplenes en el Delta del Paraná: situación, efectos ambientales y marco jurídico (pp. 5-14). Wetlands International. [ Links ]

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/Links ]

Ralph, C., Geupel, G., Pyle, P., Martin, T., De Sante, D., & Mila, B. (1996). Manual de métodos de campo para el monitoreo de aves terrestres. Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. [ Links ]

Rannestad, O. T., Tsegaye, D., Munishi, P. K. T., & Moe, S. R. (2015). Bird abundance, diversity, and habitat preferences in the riparian zone of a disturbed wetland ecosystem: The Kilombero Valley, Tanzania. Wetlands, 35(3), 521-532. https://doi.org/10.1007/s13157-015-0640-8 [ Links ]

Remsen, J. V. Jr., Areta, J. I., Bonaccorso, E., Claramunt, S., Jaramillo, A., Lane, D. F., Pacheco, J. F., Robbins, M. B., Stiles, F. G., & Zimmer, K. J. (2022). A classification of the bird species of South America. American Ornithological Society. [ Links ]

Ringuelet, R. A. (1961). Rasgos de la zoogeografía de la Argentina. Physis, 22(63), 151-170. [ Links ]

Robinson, C. T., Tockner, K., & Ward, J. V. (2002). The fauna of dynamic riverine landscapes. Freshwater Biology, 47(4), 661-677. https://doi.org/10.1046/j.1365-2427.2002.00921.x. [ Links ]

Ronchi-Virgolini, A. L., Beltzer, A. H., & Manzano, A. (2008). Bird Communities in wetlands along the Lower Paraná River, Entre Ríos, Argentina. Avian Biology Research, 1(4), 153-163. https://doi.org/10.3184/175815508X404282 [ Links ]

Ronchi-Virgolini, A. L., Lorenzón, R. E., Blake, J. G., & Beltzer, A. H. (2013). Temporal variation of bird assemblages in a wetland: influence of spatial heterogeneity. Avian Biology Research, 6(3), 198-206. [ Links ]

Ronchi-Virgolini, A. L., Blake, J. G., Lorenzón, R. E., & Beltzer, A. H. (2011). Bird assemblages in two types of forests in the floodplain of the lower Paraná River (Argentina). Ornitología Neotropical, 22(3), 387-404. [ Links ]

Ronchi-Virgolini, A. L., Lorenzón, R. E., Beltzer, A. H., & Alonso, J. M. (2010). Ensambles de aves del Parque Nacional Pre-Delta (Entre Ríos, Argentina): análisis de la importancia ornitológica de distintas unidades ambientales. Hornero, 25(1), 27-40. https://doi.org/10.56178/eh.v25i1.709 [ Links ]

Root, R. B. (1967). The niche explotation pattern of the blue-gray gnatcatcher. Ecological monographs, 37(4), 317-350. https://doi.org/10.2307/1942327 [ Links ]

Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge University Press. https://doi.org/10.1017/CBO9780511623387 [ Links ]

Rossetti, M. A., & Giraudo, A. R. (2003). Comunidades de aves de bosques fluviales habitados y no habitados por el hombre en el río Paraná medio, Argentina. Hornero, 18(2), 89-96. http://hdl.handle.net/20.500.12110/hornero_v018_n02_p089Links ]

Sabattini, R. A., & Lallana, V. H. (2007). Aquatic macrophytes. In M. H. Iriondo, J. C. Paggi, & M. J. Parma (Eds.), The middle Paraná River (pp. 205-226). Springer. [ Links ]

Symonds, M. R. E., & Johnson, C. N. (2008). Species richness and evenness in Australian birds. American Naturalist, 171(4), 480-490. https://doi.org/10.1086/528960 [ Links ]

Tavares, D. C., Guadagnin, D. L., de Moura, J. F., Siciliano, S., & Merico, A. (2015). Environmental and anthropogenic factors structuring waterbird habitats of tropical coastal lagoons: Implications for management. Biological Conservation, 186, 12-21. https://doi.org/10.1016/J.BIOCON.2015.02.027 [ Links ]

Tockner, K., Malard, F., & Ward, J. V. (2000a). An extension of the flood pulse concept. Hydrological Processes, 14(16-17), 2861-2883. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F [ Links ]

van Nes, E. H. & Scheffer, M. (2005). Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology, 86(7), 1797-1807. [ Links ]

Velásquez-Valencia, A. (2018). Influencia de la configuración y composición de los paisajes agroforestal y silvopastoril en la estructura de la comunidad de aves del piedemonte amazónico (Tesis doctoral). Universidad de Colombia. https://repositorio.unal.edu.co/handle/unal/64065Links ]

Vellend, M. (2001). Do commonly used indices of diversity measure species turnover? Journal of Vegetation Science, 12(4), 545-552. https://doi.org/10.2307/3237006 [ Links ]

Verner, J., & Milne, K. A. (1989). Coping with sources of variability when monitoring population trends. Annales Zoologici Fennici, 26, 191-199. [ Links ]

Viana, A. C. M., & Jardim, F. C. (2013). Natural regeneration dynamics of Couratari guianensis in a tropical forest selectively logges in Moju, state of Para, Brazil. Amazonian Journal of Agricultural and Environment Sciences, 56(2), 112-119. [ Links ]

Zerda, H. R., & Tiedemann, J. L. (2010). Dinámica temporal del NDVI del bosque y pastizal natural en el Chaco Seco de la Provincia de Santiago del Estero, Argentina. Ambiencia, 6(1), 1-11. [ Links ]

Received: August 11, 2023; Revised: April 10, 2024; Accepted: July 30, 2024

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License