Introducción
El cambio climático ha generado un impacto progresivo en los procesos de planificación y desarrollo de los países. En este contexto, América Central es una de las regiones con mayor vulnerabilidad al cambio climático, con efectos negativos proyectados para afectar su economía y su seguridad alimentaria (De Sousa et al., 2018). La percepción por parte de estos ganaderos de los riesgos debidos a este cambio en el clima y las medidas que toman para abordar esos riesgos son de suma importancia en la formulación de políticas, para que la implementación de las estrategias sea sostenible tanto económica como ambientalmente (Amamou et al., 2018).
Alrededor del mundo, los sistemas de producción ganadera varían significativamente, lo que convierte la implementación de políticas sectoriales en un desafío complejo (Havlik et al., 2014). Esta situación resulta relevante, ya que el sector ganadero es un actor clave en la adaptación y mitigación de las emisiones de gases de efecto invernadero y en la mejora de la seguridad alimentaria mundial (Rojas-Downing et al., 2017).
La ganadería bovina costarricense es una actividad relevante, representa un 79,49 % del PIB de la producción pecuaria nacional (Secretaría Ejecutiva de Planificación Sectorial Agropecuaria, 2018) e impacta todo el territorio nacional. Para este trabajo, se seleccionaron dos regiones que representan el 56,2 % de las fincas del país: la región Chorotega, con el 22,7 % de las fincas y el casi 22 % del hato nacional, y la región Huetar Norte, con el 33,5 % de las fincas y el 34 % de la población bovina costarricense (Instituto Nacional de Estadística y Censos, 2015).
En Costa Rica, los sistemas de producción de leche se han clasificado en tres grupos: lecherías especializadas de altura, lecherías especializadas de bajura y hatos de doble propósito (Rodríguez Lizano & Montero Vega, 2016). Estos presentan una amplia variabilidad en aspectos tales como los sistemas de confinamiento, los tipos de razas, el uso de tecnologías y la mano de obra (Luik-Lindsaar et al., 2019). Por estas razones, se destaca la necesidad de caracterizar de forma precisa los diferentes sistemas de producción (Lalani et al., 2021; Mugambi et al., 2017). En este contexto, el análisis de conglomerados planteado en este estudio busca mejorar la comprensión de la diversidad de las fincas y los factores asociados a la adopción de tecnologías, con el fin de generar estrategias de extensión adaptables a dicha diversidad (Danso-Abbeam, 2022; Girma & Kuma, 2022).
En el territorio costarricense, dos estudios han reportado el uso de análisis multivariado. El primero se relacionó con el proceso de toma de decisiones en un grupo de productores de leche (Solano et al., 2003), mientras que el segundo caracterizó y clasificó de manera general los hatos lecheros costarricenses (Vargas-Leitón et al., 2013). Esta caracterización resulta relevante, ya que en Costa Rica existe una marcada estacionalidad por los períodos de lluvias y la ausencia de ellas (Ministerio de Agricultura y Ganadería & Ministerio de Ambiente y Energía, 2015).
El impacto de las condiciones climáticas cambiantes en las respectivas regiones requiere de una comprensión por parte de los productores, de la comunidad científica y del público, con el propósito de mejorar la capacidad de respuesta ante el cambio climático (Guo et al., 2022; Verburg et al., 2022). La metodología empleada ilustra que, a medida que los países ejecutan programas de adaptación (Mullan et al., 2015), también se deben realizar caracterizaciones y evaluaciones de los productores. Esta información proporciona a los formuladores de políticas ganaderas y a otras partes interesadas los insumos mejorados para trabajar en una evaluación de políticas confiables y eficientes a nivel económico (Ghahramani et al., 2020). Por lo anterior, el objetivo del presente estudio fue caracterizar los sistemas de producción de leche en dos regiones ganaderas representativas de Costa Rica y sus capacidades de adaptación tecnológica al cambio climático.
Materiales y métodos
Área de estudio
El estudio se realizó en dos regiones de Costa Rica: la región Huetar Norte y la región Chorotega, seleccionadas por ser zonas ganaderas representativas del país (Figura 1). Estas regiones producen 1,61 millones de litros de leche al año, lo que equivale a un 55 % de la producción nacional (Instituto Nacional de Estadística y Censos (INEC), 2015). A nivel nacional, el 46 % de las fincas lecheras se encuentran en estas zonas, donde se cría alrededor del 65 % del total nacional de cabezas de ganado lechero (INEC, 2015).
La región Huetar Norte cuenta con un clima tropical lluvioso, mientras que la región Chorotega presenta un clima tropical seco con dos estaciones bien definidas, la seca (de diciembre a abril) y la estación lluviosa (de mayo a noviembre) (Zevallos, 2013). La temperatura promedio de estas regiones es de 27 °C, con cifras máximas de 36 °C en los meses de época seca y una temperatura mínima de 16 °C (Federación de Cámaras de Ganaderos de Guanacaste & Ministerio de Agricultura y Ganadería, 2007). La producción promedio de leche por vaca varía de 12 a 20 kg al día en las partes más altas (500 a 1000 m s. n. m.) y entre 6 a 8 kg en las zonas bajas (100 a 250 m s. n. m.) (Barrientos & Villegas, 2010; Instituto Meteorológico Nacional, s. f.).
Selección de fincas y obtención de información
Para el desarrollo de este estudio, se aplicó la metodología de caracterización y tipificación de sistemas ganaderos pecuarios propuesta por Valerio Cabrera et al. (2004), replicada por De León-García et al. (2018) y Temoche Socola (2019), y se utilizó la herramienta de estadística multivariada de análisis de conglomerados (Tangorra et al., 2022; Toro-Mujica et al., 2020). Para determinar el tamaño de la muestra y debido a la falta de evidencia preliminar, se tomó la variable de la proporción de fincas que adoptarían una estrategia de adaptación con la probabilidad de 0,5 en la respectiva fórmula de cálculo muestral. El análisis estadístico se efectuó con el programa IBM SPSS Statistics (Versión 27).
En la investigación se utilizó un nivel de confianza del 90 %, similar a estudios previos (Valerio Cabrera et al., 2004; Vargas-Leitón et al., 2013), y un error del 7 %. Este error se incrementó debido a las grandes limitaciones de acceso a los ganaderos por las restricciones impuestas a causa de la pandemia de COVID-19. Esto se agravó por la poca disposición de los ganaderos a participar en las entrevistas como consecuencia de la situación sanitaria y los altos costos asociados.
La recolección de los datos se llevó a cabo entre abril y mayo de 2021, por medio de un instrumento de trabajo de campo que permitió obtener la información socioeconómica y productiva de los ganaderos, así como sus percepciones sobre el cambio climático y los procesos de adaptación implementados en sus fincas. Respecto al tamaño muestral, de un total de 14 909 fincas en las dos regiones, se seleccionaron 136 fincas para muestrear: 81 en la región Huetar Norte y 55 en la región Chorotega.
Las variables se organizaron en apartados generales y socioculturales, económicos, productivos, legales y ambientales. Este último apartado se dividió en tres subapartados: percepción del cambio climático, impacto del cambio climático en el sistema de producción, y disposición para implementar estrategias de adaptación.
Análisis estadístico
Se seleccionaron 42 variables de manera preliminar (Cuadro 1), con base en criterios de representatividad y contribución a la caracterización de los sistemas, según los estudios mencionados, los criterios de tres extensionistas ganaderos y la revisión bibliográfica (Tatis Diaz et al., 2022). Posteriormente, según el aporte de estos criterios a la caracterización del productor y a su sistema productivo, se eligieron 27 variables, las cuales fueron estandarizadas. Este proceso incluyó un análisis descriptivo para calcular la media, los valores mínimo y máximo, y el coeficiente de variación de cada una. Se seleccionaron solo aquellas que presentaron mayor variabilidad (coeficiente de variación (CV) ≥ 50 %) y que no estuvieron correlacionadas. En este proceso, se aplicaron varios métodos de extracción de factores y se optó por el método de factores principales (Musafiri et al., 2020).
Cuadro 1 Variables identificadas de manera preliminar y su componente previo asignado en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Componentes principales asignados inicialmente | ||||||
General | Económico | Productivo | Percepción del cambio climático | Impacto del cambio climático | Disposición a implementar estrategias de adaptación | Legal |
Edad (años) (CV=0,27) | Registro de ingresos (CV=0,44) | Programa de mantenimiento (CV=1,31) | Percepción del cambio climático (CV=0,24) | Variación en la producción de leche (CV=0,66) | Elaboración de ensilaje (CV=1,58) | Paga de cargas sociales (CV=0,33) |
Escolaridad (CV=0,74) | Sistema de registro de ingresos (CV=0,61) | Carga animal (CV=0,67) | Años de percibir cambios en el clima (CV=0,64) | Variación en ingresos (CV=0,52) | Uso de bancos forrajeros (CV=1,48) | |
Región (CV=0,32) | Crédito (CV=0,49) | Registros de pesajes de leche (CV=0,35) | Percepción de temperatura (CV=0,28) | Variación en la incidencia de enfermedades (CV=0,90) | Uso de cercas vivas (CV=0,49) | |
Área total (ha) (CV=1,24) | Planeación de producción de leche (CV=1,01) | Frecuencia de las lluvias (CV=0,30) | Variación en la mortalidad (CV=1,73) | Uso de reservorios de agua (CV=0,96) | ||
Años en la actividad (CV=0,70) | Registros sanitarios de ganado (CV=0,45) | Percepción de sequías (CV=0,77) | Uso de riego tecnificado (CV=1,04) | |||
Asociatividad (CV=0,58) | Registros de reproducción de hato (CV=0,74) | Ha escuchado sobre cambio climático (CV=0,29) | Uso de fertilización orgánica (CV=0,60) | |||
Método de registros de reproducción (CV=0,40) | Conocimiento sobre cambio climático (CV=0,41) | Uso de sistemas silvopastoriles (CV=1,53) | ||||
Programa de reproducción de hato (CV=0,90) | Causa: ciclos naturales (CV=1,29) | Uso de pasturas mejoradas (CV=0,65) | ||||
Programa de alimentación para ganado (CV=0,75) | Causa: otras actividades humanas (CV=0,47) | Uso de ganado adaptado (CV=1,11) | ||||
Causa: actividad agropecuaria (CV=2,49) |
* CV: coeficiente de variación. / * CV: Coefficient of variation.
Una vez realizado este procedimiento, se utilizó el coeficiente de correlación de Pearson para medir las correlaciones entre variables identificadas, lo que permitió determinar la magnitud de la asociación lineal entre dos variables que no dependían de las unidades de medida de las variables originales. Esta metodología ameritó que se detallaran los valores previos de comunalidad para cada variable, los cuales se estimaron a partir del valor máximo de correlación absoluta de cada variable observada con cualquiera de las demás.
Tras examinar varios métodos de rotación, se seleccionó el método ortogonal Varimax (Visinescu & Evangelopoulos, 2014) para obtener los factores del análisis. En este proceso, se evaluó que el modelo factorial en su conjunto resultara ser significativo por medio de la prueba de esfericidad de Bartlett y la KMO (Kaiser-Meyer-Olkin). Este método permite mantener la autonomía entre los factores, lo que constituye una propiedad importante para el análisis de conglomerados. Para establecer el número mínimo de factores necesarios, se seleccionaron aquellos con raíces latentes (autovalores) mayores que uno y se procuró que la proporción acumulada de varianza explicada por los factores extraídos fuera cercana a 70 % (Benítez Jiménez et., 2016; Torres et al., 2013).
Para obtener los conglomerados, se inició con los factores encontrados y se realizó un análisis jerárquico de conglomerados con base en el método de Ward (Ogasawara & Kon, 2021), como medida de distancia de la métrica euclidiana cuadrática. El análisis de conglomerados agrupó los individuos con respecto a su similitud en los valores de las distintas variables consideradas. Esto permitió realizar la clasificación de datos para establecer grupos homogéneos de explotaciones, tal como reportaron Ahikiriza et al. (2021) y Bâtie et al. (2022). Al finalizar este proceso, se procedió a efectuar una descripción y análisis, tanto general como individual, de los conglomerados mediante cálculo de medidas de estadística descriptiva (media y desviación estándar).
Resultados
Características generales de los productores
Con respecto a los productores estudiados, se encontró que la mayoría estaba en un rango de edad superior a los cincuenta años (55 % de la muestra) con un nivel de escolaridad entre la primaria y secundaria completa (50 %) (CV 74 %). La moda de los años dedicados a la actividad ganadera fue de 40 años (CV 70 %).
Más del 80 % de la muestra correspondió a fincas dedicadas a la lechería especializada que entregan su producción a diferentes industrias de las regiones, sean estas de tipo cooperativo o privado. Del total de fincas, casi el 75 % fueron catalogadas como pequeñas y solo el 7 % como grandes, de acuerdo con la clasificación generada por el Decreto n.° 37911 del Ministerio de Agricultura y Ganadería.
Las razas Jersey y Holstein predominan en los predios ganaderos entrevistados, con presencia en más del 50 % de las fincas. También, se encuentran animales cruzados o “chumecas” en el 40 % de las fincas. En promedio, las hectáreas dedicadas al pastoreo son 42, con una carga animal promedio por finca de alrededor de 3,5 UA/ha y una moda de aproximadamente 2 UA/ha.
El 95 % de los productores afirmaron estar de acuerdo con que el clima ha variado en los últimos años. El 86 % de los productores opinaron que los cambios climáticos han sido más notorios en los últimos 5 a 10 años (CV 30 %). Entre las razones por las cuales los ganaderos creen que el clima ha cambiado se encuentran los ciclos naturales y la actividad agropecuaria.
Respecto a los impactos que ha tenido el cambio climático en sus sistemas productivos en los últimos cinco años, el 71 % de los productores afirman que se han registrado variaciones en la producción de leche. Cuando se les consultó acerca de cómo ha sido esa variación, el 85 % de los ganaderos indicaron que había disminuido (CV 52 %). Además, señalaron un incremento en la incidencia de enfermedades y, en menor medida, un aumento en la mortalidad de los animales.
En cuanto al conocimiento de medidas de adaptación para afrontar el cambio climático, casi la totalidad de los productores (97 %) manifestó conocer estas medidas. Entre las prácticas mencionadas se incluyen el uso de bancos forrajeros, la elaboración de ensilaje, las cercas vivas, el ganado adaptado, los reservorios de agua, el riego tecnificado, la fertilización orgánica, el uso de pasturas mejoradas y los sistemas silvopastoriles.
Clasificación del productor según el análisis de conglomerados
El análisis de conglomerados reveló la existencia de variables que influyen en mayor magnitud que otras durante el proceso de tipificación de productores. Las variables seleccionadas fueron la escolaridad, el área total de las fincas, los años totales en la actividad, el grado de asociación de los productores y la utilización de sistemas de registros, que incluyeron registros de reproducción, alimentación y sanitarios, y la existencia de un programa de mantenimiento. Además, se identificaron otras variables como la carga animal, los años de percibir cambios en el clima, la presencia de sequías, la variación en la producción de leche, la incidencia de enfermedades y la mortalidad.
Los productores reiteraron como posibles causas del cambio climático la actividad agropecuaria y los ciclos naturales. También se mencionaron prácticas realizadas en las fincas, tales como la elaboración de ensilaje y el uso de bancos forrajeros, reservorios de agua, sistemas silvopastoriles, pasturas mejoradas y razas de ganado adaptado. Por último, se destacaron las técnicas de riego implementadas y la fertilización orgánica. Una vez completado el análisis, se seleccionaron solo las variables con mayor variabilidad (CV ≥ 50 %) (Cuadro 2) y sin correlación entre sí.
Cuadro 2 Variables seleccionadas con mayor variabilidad (coeficiente de variación ≥ 50 %) y sin correlación entre sí, obtenidas mediante el proceso de análisis descriptivo en las regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Variables | Media | Mínimo | Máximo | CV | Variables | Media | Mínimo | Máximo | CV |
Causa: actividad agropecuaria | 0,14 | 0,00 | 1,00 | 2,49 | Percepción de sequías | 0,63 | 0,00 | 1,00 | 0,77 |
Variación en la mortalidad | 0,25 | 0,00 | 1,00 | 1,73 | Programa de alimentación para ganado | 0,64 | 0,00 | 1,00 | 0,75 |
Elaboración de ensilaje | 0,29 | 0,00 | 1,00 | 1,58 | Escolaridad | 2,84 | 0,00 | 7,00 | 0,74 |
Uso de sistemas silvopastoriles | 0,30 | 0,00 | 1,00 | 1,53 | Registros sanitarios de ganado | 0,83 | 0,00 | 1,00 | 0,74 |
Uso de bancos forrajeros | 0,31 | 0,00 | 1,00 | 1,48 | Años en la actividad | 27,23 | 1,00 | 80,00 | 0,70 |
Programa de mantenimiento | 0,37 | 0,00 | 1,00 | 1,31 | Carga animal | 3,69 | 0,62 | 12,96 | 0,67 |
Causa: ciclos naturales | 0,38 | 0,00 | 1,00 | 1,29 | Variación en la producción de leche | 0,70 | 0,00 | 1,00 | 0,66 |
Área total (ha( | 36,24 | 1,80 | 300,00 | 1,24 | Uso de pasturas mejoradas | 0,71 | 0,00 | 1,00 | 0,65 |
Ganado adaptado | 0,45 | 0,00 | 1,00 | 1,11 | Años de percibir cambios en el clima | 8,43 | 0,00 | 30,00 | 0,64 |
Uso de riego tecnificado | 0,48 | 0,00 | 1,00 | 1,04 | Sistema de registro de ingresos | 2,97 | 0,00 | 5,00 | 0,61 |
Planeación de producción de leche | 0,50 | 0,00 | 1,00 | 1,01 | Uso de fertilización orgánica | 0,73 | 0,00 | 1,00 | 0,60 |
Uso de reservorios de agua | 0,52 | 0,00 | 1,00 | 0,96 | Asociatividad | 0,75 | 0,00 | 1,00 | 0,58 |
Programa de reproducción de hato | 0,55 | 0,00 | 1,00 | 0,90 | Variación en los ingresos | 0,79 | 0,00 | 1,00 | 0,52 |
Variación en la incidencia de enfermedades | 0,55 | 0,00 | 1,00 | 0,90 |
* CV: coeficiente de variación. / * CV: Coefficient of variation.
El índice KMO resultó ser aceptable, con un valor de 0,701. La prueba de esfericidad de Bartlett fue menor a 0,001, lo que permitió comparar las magnitudes de los coeficientes de correlación parcial. Además, se obtuvieron valores previos de comunalidad para cada variable, estimados a partir del valor máximo de correlación absoluta de cada variable observada con respecto a las demás (Cuadro 3). De esta forma, se alcanzaron los nuevos factores que representaron a las variables originales.
Cuadro 3 Resultados de los valores previos de comunalidad de los nuevos factores obtenidos para cada variable en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Comunalidades | |||||
Variables | Inicial | Extracción | Variables | Inicial | Extracción |
Escolaridad | 1 | 0,59 | Variación en la incidencia de enfermedades | 1 | 0,58 |
Área total (ha) | 1 | 0,75 | Variación en la mortalidad | 1 | 0,62 |
Años en la actividad | 1 | 0,64 | Causa: ciclos naturales | 1 | 0,66 |
Asociatividad | 1 | 0,63 | Causa: actividad agropecuaria | 1 | 0,62 |
Sistema de registros de ingresos | 1 | 0,49 | Elaboración de ensilaje | 1 | 0,48 |
Programa de mantenimiento | 1 | 0,52 | Uso de bancos forrajeros | 1 | 0,57 |
Carga animal | 1 | 0,68 | Uso de reservorios de agua | 1 | 0,48 |
Registros sanitarios de ganado | 1 | 0,55 | Uso de riego tecnificado | 1 | 0,46 |
Programa de reproducción de hato | 1 | 0,72 | Uso de fertilización orgánica | 1 | 0,60 |
Programa de alimentación para ganado | 1 | 0,64 | Uso de sistemas silvopastoriles | 1 | 0,53 |
Años de percibir cambios en el clima | 1 | 0,74 | Uso de pasturas mejoradas | 1 | 0,70 |
Percepción de sequías | 1 | 0,47 | Uso de ganado adaptado | 1 | 0,51 |
Variación en la producción de leche | 1 | 0,50 |
Se identificaron ocho nuevos factores, los cuales explicaron cerca del 60 % acumulado de la variación del total de la muestra (método de rotación ortogonal Varimax). En este análisis, se observó un decrecimiento a partir del noveno valor (Cuadro 4 y Figura 2); es decir, estos ocho factores explicaron la mayoría de las variables iniciales y cómo se agruparon las variables en los factores retenidos (Cuadro 5).
Cuadro 4 Resultados de la varianza de los ocho nuevos factores obtenidos mediante el método de rotación ortogonal Varimax en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Factor | Autovalores iniciales | Sumas de cargas al cuadrado de la extracción | ||||
Total | % varianza | % acumulado | Total | % varianza | % acumulado | |
1 | 3,93 | 15,70 | 15,70 | 3,93 | 15,70 | 15,70 |
2 | 2,49 | 9,96 | 25,66 | 2,49 | 9,96 | 25,66 |
3 | 1,81 | 7,23 | 32,90 | 1,81 | 7,23 | 32,90 |
4 | 1,48 | 5,93 | 38,82 | 1,48 | 5,93 | 38,82 |
5 | 1,46 | 5,82 | 44,65 | 1,46 | 5,82 | 44,65 |
6 | 1,30 | 5,18 | 49,83 | 1,30 | 5,18 | 49,83 |
7 | 1,22 | 4,87 | 54,70 | 1,22 | 4,87 | 54,70 |
8 | 1,06 | 4,23 | 58,93 | 1,06 | 4,23 | 58,93 |
9 | 0,99 | 3,95 | 62,88 |

Figura 2 Sedimentación de los componentes asociados a los factores obtenidos mediante el método de rotación Varimax en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Cuadro 5 Resumen de las variables asociadas a los factores obtenidos mediante el método de rotación Varimax en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Factor | Variables | Factor | Variables |
Administrativo | Programa de reproducción de hato | Adaptación 1 | Uso de pasturas mejoradas |
Programa de alimentación para ganado | Uso de ganado adaptado | ||
Registros sanitarios de ganado | Elaboración de ensilaje | ||
Uso de riego tecnificado | Adaptación 2 | Uso de bancos forrajeros | |
Programa de mantenimiento | Uso de reservorios de agua | ||
Sistema de registros de ingresos | Experiencia | Años en la actividad | |
Asociatividad | Percepción de sequías | ||
Uso de sistemas silvopastoriles | |||
Productivo | Variación en la incidencia de enfermedades | Educación | Escolaridad |
Variación en la mortalidad | Causa: actividad agropecuaria | ||
Causa: ciclos naturales | |||
Variación en la producción de leche | Uso de fertilización orgánica | ||
Productividad | Carga animal Área total (ha) | Percepción del cambio climático | Años de percibir cambios en el clima |
Tipificación de los grupos de ganaderos
Por criterio de experto y utilizando la distancia euclidiana de ocho, se obtuvieron los tres conglomerados resultantes. Estas distancias fueron evaluadas mediante un tipo de coordenadas que asignan a cada individuo una ubicación en un espacio matemático. A partir de los hallazgos de este análisis, se identificaron tres grupos de ganaderos con características particulares: un grupo de alta capacidad de gestión con 50 productores (ACG, 34,96 %), un grupo de mediana capacidad de gestión con 66 productores (MCG, 46,15 %) y un grupo de baja capacidad de gestión con 27 productores (BCG, 18,88 %) (Cuadro 6).
Cuadro 6 Medias y error estándar de las variables evaluadas. Comparación de los tres grupos de ganaderos mediante la distribución de cada conglomerado por medio del método de Ward en las Regiones Chorotega y Huetar Norte, Costa Rica. 2021.
Variables | ACG N = 50 | MCG N = 66 | BCG N = 27 | |||
Media | Desv. | Media | Desv. | Media | Desv. | |
Escolaridad | 3,9 | 2,28 | 2,5 | 1,92 | 1,7 | 1,27 |
Área total (ha) | 0,49 | 1,43 | −0,32 | 0,43 | −0,11 | 0,63 |
Años totales en la actividad | −0,19 | 0,95 | 0,1 | 1,06 | 0,11 | 0,91 |
Asociatividad | 0,86 | 0,35 | 0,8 | 0,4 | 0,41 | 0,5 |
Sistema de registros de ingresos | 3,46 | 1,3 | 3,44 | 1,7 | 0,93 | 1,52 |
Programa de mantenimiento | 0,7 | 0,46 | 0,24 | 0,43 | 0,07 | 0,27 |
Carga animal | −0,11 | 1,01 | 0,18 | 1 | −0,24 | 0,92 |
Registros sanitarios de ganado | 1 | 0 | 0,86 | 0,35 | 0,44 | 0,51 |
Programa de reproducción de hato | 1 | 0 | 0,41 | 0,5 | 0,07 | 0,27 |
Programa de alimentación para ganado | 0,98 | 0,14 | 0,62 | 0,49 | 0,07 | 0,27 |
Años de percibir cambios en el clima | 0,03 | 0,89 | -0,09 | 1,06 | 0,15 | 1,05 |
Sequías | 0,74 | 0,44 | 0,58 | 0,5 | 0,56 | 0,51 |
Variación en la producción de leche | 0,82 | 0,39 | 0,58 | 0,5 | 0,78 | 0,42 |
Variación en la incidencia de enfermedades | 0,86 | 0,35 | 0,26 | 0,44 | 0,7 | 0,47 |
Variación en la mortalidad | 0,46 | 0,5 | 0,09 | 0,29 | 0,26 | 0,45 |
Causa: ciclos naturales | 0,42 | 0,5 | 0,29 | 0,46 | 0,52 | 0,51 |
Causa: actividad agropecuaria | 0,28 | 0,45 | 0,08 | 0,27 | 0,04 | 0,19 |
Elaboración de ensilaje | 0,42 | 0,5 | 0,24 | 0,43 | 0,15 | 0,36 |
Uso de bancos forrajeros | 0,28 | 0,45 | 0,36 | 0,48 | 0,26 | 0,45 |
Uso de reservorios de agua | 0,66 | 0,48 | 0,53 | 0,5 | 0,26 | 0,45 |
Uso de riego tecnificado | 0,82 | 0,39 | 0,38 | 0,49 | 0,11 | 0,32 |
Uso de fertilización orgánica | 0,98 | 0,14 | 0,65 | 0,48 | 0,48 | 0,51 |
Uso de sistemas silvopastoriles | 0,42 | 0,5 | 0,26 | 0,44 | 0,19 | 0,4 |
Uso de pasturas mejoradas | 0,6 | 0,49 | 0,7 | 0,46 | 0,93 | 0,27 |
Uso de ganado adaptado | 0,42 | 0,5 | 0,36 | 0,48 | 0,7 | 0,47 |
ACG: Alta capacidad de gestión. MCG: Mediana capacidad de gestión. BCG: Baja capacidad de gestión. Desv.: Desviación. / ACG: High management capacity. MCG: Medium management capability. BCG: Low management capacity. Desv.: Deviation.
Conglomerado 1. Alta capacidad de gestión
El conglomerado 1 estuvo conformado por 50 fincas que representaron el 35 % de la muestra. En este grupo se incluyeron fincas cuyos administradores o dueños contaban con la secundaria completa, con un promedio de 23 años en la actividad ganadera. El tamaño promedio de las fincas fue de 58 ha, con una carga animal de 3,42 UA/ha. Los registros se realizan en pizarras de anotación y en programas informáticos especializados. Los productores llevan registros sanitarios, un programa de reproducción y un programa de alimentación.
De todos los conglomerados, este grupo estuvo conformado por finqueros que tenían una percepción de que el clima ha cambiado en tiempos más recientes (ocho años). Además, manifestaron una percepción alta de que la cantidad de leche producida y la incidencia de enfermedades en sus animales han variado. Con respecto a las prácticas de adaptación implementadas, se identificaron reservorios de agua, riego tecnificado, fertilización orgánica y elaboración de ensilaje, todas ellas estrechamente relacionados con el nivel educativo de los productores de este conglomerado (secundaria completa). Al igual que en los demás conglomerados, estos finqueros utilizaban pasturas mejoradas.
Conglomerado 2. Mediana capacidad de gestión
El conglomerado 2 estuvo conformado por 66 fincas que representaron el 46,2 % de la muestra. En este grupo se incluyeron fincas cuyos dueños o administradores tenían un nivel educativo de primaria completa, pero no concluyeron la secundaria. El promedio de años en la actividad ganadera fue de 29 años. El tamaño promedio de las fincas fue mucho más pequeño que el del conglomerado 1, con 21 ha, aunque mostraron la mayor carga animal entre todos los grupos, con un valor de 4,14 UA/ha.
Al igual que en el conglomerado 1, el manejo de los registros se lleva a cabo en pizarras de anotación y/o en programas informáticos especializados. En estos registros, a diferencia del conglomerado anterior, solo se documentan los sanitarios y el programa de alimentación. Esto permite denotar una capacidad de adopción tecnológica menor que el conglomerado anterior, muy relacionada con un nivel de escolaridad menor.
De los tres conglomerados, este grupo presentó una percepción media de que ha cambiado el clima (cerca de nueve años). Además, los productores mostraron una percepción baja sobre las implicaciones de las variaciones climáticas, particularmente en cuanto a la producción de leche, la incidencia de enfermedades y la mortalidad animal. Como en los otros conglomerados, en este también se utilizaban pasturas mejoradas.
Conglomerado 3. Baja capacidad de gestión
El conglomerado 3 fue el más pequeño de todos, conformado por 27 fincas que representaron el 18,9 % de la muestra. En este grupo se encontraron los finqueros con los niveles de educación más bajos, ya que poseían primaria completa o incompleta, y un promedio de 29 años en la actividad ganadera, similar al del clúster dos. El tamaño promedio de las fincas fue de 31 h, es decir, 10 ha más que en el promedio del conglomerado 2, aunque con la carga animal más baja de todos: 3,1 UA/ha.
Los apuntes se anotan en cuadernos o libros de registro. Este grupo de productores no lleva registros adicionales, como los sanitarios, del programa de reproducción ni del programa de alimentación. Se muestra que el bajo nivel de escolaridad incide en la baja capacidad de adopción de tecnologías de adaptación, y provoca que la productividad de la finca reflejada en la carga animal sea inferior y la más baja de todos los conglomerados. Estos productores fueron los que percibieron los efectos del cambio climático desde hace más tiempo, con un promedio de 9,2 años. También tenían una percepción alta sobre la variación en la cantidad de leche producida y en la incidencia de enfermedades en sus animales, aunque no así en cuanto a la mortalidad y la presencia de sequías.
Respecto a las prácticas de adaptación implementadas, solo practicaban la fertilización orgánica. Como en los demás conglomerados, utilizaban pasturas mejoradas, pero no la práctica de elaboración de ensilaje, que ha sido poco implementada como estrategia de adaptación.
Discusión
En las regiones Chorotega y Huetar Norte, se identificaron ocho nuevos factores que explicaron el 60 % acumulado de la variación del total de la muestra. En investigaciones similares se ha requerido de cuatro o más factores para lograr un acumulado de varianza mayor al 70 % (Freitas Silveira et al., 2022; Montcho et al., 2021). Este hallazgo facilitó la compresión de los grupos en cuanto a sus limitaciones funcionales (Arrieta-González et al., 2022), su potencial y las oportunidades de desarrollo. Además, permitió potenciar la toma de decisiones informada (Rust, 2019).
En zonas con características agroecológicas similares a las de Costa Rica, como en la región sur de Brasil y el trópico húmedo colombiano, se han determinado las necesidades tecnológicas que requieren mayor atención por parte de los ganaderos, así como una adecuada delimitación de estrategias de desarrollo agropecuario (Andrighetto Canozzi et al., 2019). En Colombia, por medio del análisis de componentes principales, se encontraron cinco componentes que representan el 50,86 % de la variabilidad total; dicho análisis agrupó a los productores en cuatro tipos de conglomerados (Ballesteros-Possú et al., 2021). En Costa Rica, se comprobó que los productores se agrupan en tres conglomerados en función a la capacidad de gestión de su sistema productivo, y en Perú también se reportó la conformación de tres grupos (Mejía-Valvas et al., 2021).
En Chile, se obtuvieron tres componentes principales que explicaban el 72,1 % de la varianza. Mediante el análisis de conglomerados, se alcanzaron cuatro grupos con características que variaron según el tamaño de la finca, la edad, la gestión de la finca y su rentabilidad (Avilez et al., 2018). En este estudio, se ocuparon ocho componentes para explicar un 60 % de la varianza acumulada, mientras que en estudios similares para lograr una varianza total acumulada mayor a 70 % se utilizaron cuatro o más componentes. Por ejemplo, Serrano Martínez et al. (2004) utilizaron siete componentes principales para explicar el 67,1 % de la varianza total, y Martínez García et al. (2012) identificaron cinco componentes que explicaron el 70,4 % de la varianza acumulada.
La relación entre el nivel educativo y la capacidad de gestión de predio incide de manera positiva en los procesos de adopción de tecnologías de adaptación al cambio climático. Este hallazgo también fue reportado por Mulwa et al. (2017) e implicó que cuanto más alfabetizado sea un productor, más capaz será de buscar y procesar información, tales como el manejo de registros y estrategias para afrontar los riesgos asociados al cambio climático. Se resaltó, además, que un aumento en los años de educación formal de los agricultores incrementa su adopción de prácticas agrícolas sostenibles.
En las regiones estudiadas, algunos ganaderos gestionan sus registros mediante programas informáticos o pizarras, mientras que otros usan cuadernos o libros de anotaciones. Algunos productores expresaron desconocimiento sobre la utilidad de mantener registros sanitarios de los animales, como lo reportaron Mwanga et al. (2019), lo cual podría explicar por qué ciertos productores de leche llevan pocos registros.
En el caso de los dos primeros conglomerados (quienes más registros llevan), se evidenció un importante avance tecnológico en la gestión y el manejo de los aspectos técnicos y económicos de sus fincas, con las cargas animales por hectárea más altas (3,42 y 4,14, respectivamente). La carga ganadera de la finca representa un indicador clave, en un nivel que intenta igualar el potencial de producción de forraje de la finca (Roche et al., 2017). En ese sentido, es conocido que las tasas de carga ganadera son relevantes para la evaluación de la productividad y la rentabilidad de los sistemas basados en pastos.
Tasas de carga ganadera más altas pueden aumentar la utilización del forraje y la producción de leche por hectárea (McCarthy et al., 2014). En esta investigación, los resultados de las cargas encontradas por conglomerado presentaron rangos similares a otros estudios, tales como 2,5 UA/ha (Fenger et al., 2023). Otras investigaciones han llevado a cabo evaluaciones de pastoreo con tasas de baja carga animal de 2,51 UA/ha, media carga de 2,92 UA/ha, y alta carga de 3,28 UA/ha (McCarthy et al., 2016). Esto también fue evaluado por Cahill et al. (2023), quienes reportaron dos cargas ganaderas: media (2,5 UA/ha) y alta (2,9 UA/ha).
En cuanto a la asociación entre el nivel educacional de los productores y la cantidad de leche producida, Avilez et al. (2010) han reportado que los productores grandes poseían un título profesional de nivel superior técnico o de ingeniero. La educación fue un factor influyente en la adopción de tecnologías (Ayora Garagate, 2015; Pinedo Taco et al., 2017). Este punto tiene una estrecha relación en cada conglomerado identificado, ya sea nivel de secundaria, primaria completa o incompleta.
Estos resultados reafirmaron que adoptar prácticas de adaptación debido al aumento de los niveles formativos (Erekalo & Yadda, 2023) incrementa el nivel de comprensión y la capacidad para buscar información sobre tecnologías mejoradas. En Tanzania también se ha reportado un efecto positivo del nivel educativo en la decisión de adoptar prácticas (Ogada et al., 2021; Kassa y Abdi, 2022). Se evidencia así, que, en la estrategia para mejorar la productividad, la rentabilidad y la sostenibilidad de la agricultura, la innovación tecnológica debe ir de la mano con la educación (Bragaglio et al., 2023), lo cual también es clave para el éxito empresarial (Galina et al., 2016; Rangel et al., 2020).
Se necesitan nuevas formas de abordaje para población con menor escolaridad (Paul et al., 2020) y se manifiesta la importancia de mejorar la comprensión de los marcos de manejo empresariales e institucionales, los incentivos y la coordinación entre las partes interesadas. La difusión de la tecnología debe medirse con precisión para comprender sus implicaciones y potencialidades, ya que se evidencia que los productores de leche costarricenses se han caracterizado por una combinación de objetivos, que van desde la maximización económica empresarial hasta orientaciones más propias de la economía familiar.
Conclusiones
Se identificaron tres conglomerados que permitieron caracterizar a los ganaderos de las regiones en estudio. La educación resultó ser un factor determinante en la adopción de técnicas de adaptación, lo cual se evidenció en el conglomerado 1, conformado por finqueros con mayor nivel educativo. El conglomerado 2 destacó por presentar la carga animal más alta con 4,14 UA/ha y un nivel medio de educación. En el conglomerado 3 el menor nivel de escolaridad incidió en una baja capacidad de adopción de tecnologías de adaptación, con una productividad inferior reflejada en la menor carga animal entre todos los conglomerados.