VER CONTENIDO COMPLETO EN PDF
Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Similars in SciELO
Share
Revista de Matemática Teoría y Aplicaciones
Print version ISSN 1409-2433
Rev. Mat vol.25 n.1 San José Jan./Jun. 2018
http://dx.doi.org/10.15517/rmta.v1i25.32228
Artículos
On Delta-Graphs And Delta Conjecture
Sobre Delta-Grafos Y La Conjetura Delta
1Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica. E-Mail: pdiaz@costarricense.cr; pdiazn@gmail.com
In this paper we define two infinite families of graphs called C-δ graphs and δ-graphs and prove that δ-graphs satisfy delta conjecture. Also we see that C-δ graphs family contains the complements of δ-graphs. Finally we give a list of C-δ graphs and the relationship with the minimum semidefinite rank of these graphs.
Keywords: delta conjecture; simple connected graphs; minimum semidefinite rank; δ-graph; C-δ graphs; orthogonal representation.
En este artículo definimos dos familias de grafos llamadas C-δ grafos y δ-grafos y se prueba que los δ-grafos satisfacen la conjetura delta. También vemos que la familia de los C-δ grafos contienen los complementos de los δ-grafos. Finalmente damos una lista de C-δ grafos y la relación con el rango mínimo semidefinido de estos grafos.
Palabras clave: conjetura delta; grafo simple conexo; rango mínimo semidefinido; δ-grafo; C-δ grafo; representación ortogonal
References
AIM Minimum Rank-Special Graphs Work Group (Barioli, B.; Barrett, W.; Butler, S.; Cioaba, S.; Fallat, S.; Godsil, C.; Haemers, W.; Hogben, L.; Mikkelson, R.; Narayan, S.; Pryporova, O.; Sciriha, I.; Stevanovic, D.; Van Der Holst, H.; Van Der Meulen, K.; Wangsness, A.) (2008) “Zero forcing sets and the minimum rank of graphs", Linear Algebra and its Applications 428(7): 1628-1648. [ Links ]
Barioli, F.; Barrett, W.; Fallat, S.; Hall, H.; Hogbend, L.; van der Holst, H. (2012) “On the graph complement conjecture for minimum rank", Linear Algebra and its Applications 436(12): 4373-4391. [ Links ]
Barioli, F.; Barrett, W.; Fallat, S.; Hall, H.; Hogbend, L.; Shader, B.; van den Driessche, P.; van der Holst, H. (2010) “Zero forcing parameters and minimum rank problems", Linear Algebra and its Applications 433(2): 401-411. [ Links ]
Barioli, F.; Fallat, S.; Mitchell, L.; Narayan, S. (2011) “Minimum semidefinite rank of outerplanar graphs and the tree cover number", Electronic Journal of Linear Algebra 22(2): 10-21. [ Links ]
Barrett, W.; van der Holst, H.; Loewy, R. (2004) “Graphs whose minimal rank is two", Electronic Journal of Linear Algebra 11(21): 258-280. [ Links ]
Beagley, J et al . (2007) “On the Minimum Semidefinite Rank of a Graph Using Vertex Sums, Graphs with msr(G) = |G|− 2, and the msrs of Certain Graphs Classes”, in: NSF-REU Report from Central Michigan University (Summer 2007). [ Links ]
Berman, A.; Friedland, S.; Hogben, L.; Rothblum, U.; Shader, B. (2008) "An upper bound for the minimum rank of a graph", Linear Algebra and its Applications 429(7): 1629-1638. [ Links ]
Bollobás, B. (1998) Modern Graph Theory. Springer, Memphis, TN [ Links ]
Bondy, A.; Murty, M. (2008) Graph Theory. Springer, San Francisco, CA. [ Links ]
Booth, M.; Hackney, P.; Harris, B.; Johnson, C.; Lay, M.; Lenker, T.; Mitchell, L.; Narayan, S.; Pascoe, A.; Sutton, B. (2011) “On the minimum semidefinite rank of a simple graph", Linear and Multilinear Algebra 59(5): 483-506. [ Links ]
Booth, M.; Hackney, P.; Harris, B.; Johnson, C.R.; Lay, M.; Mitchell, L.H.; Narayan, S.K.; Pascoe, A.; Steinmetz, K.; Sutton, B.D.; Wang, W. (2008) “On the minimum rank among positive semidefinite matrices with a given graph", SIAM Journal on Matrix Analysis and Applications 30(2): 731- 740. [ Links ]
Brandstädt, A.; Spinrad, J.; Le, V. (1999) Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, PA. [ Links ]
Brualdi, R.; Leslie, H.; Shader, B. (2007) AIM workshop spectra of families of matrices described by graphs, digraphs, and sign patterns final report: mathematical results, en: http://www.aimath.org/ pastworkshops/matrixspectrumrep.pdf [ Links ]
Chartrand, G.; Lesniak, L.; Zhang, P. (2010) Graphs & Digraphs. Taylor & Francis Group, Boca Raton, FL. [ Links ]
Diaz, P. (2014) On the Delta Conjecture and the Graph Complement Conjecture for Minimum Semidefinite Rank of a Graph. Ph.D Dissertation, Mathematics Department, Central Michigan University, Michigan. [ Links ]
Ekstrand, J.; Erickson, C.; Hall, H.; Hay, H.; Hogben, L.; Johnson, R.; Kingsley, N.; Osborne, S.; Peters, T.; Roat, J.; Ross, A.; Row, D.; Warnberg, N.; Young, M. (2013) “Positive semidefinite zero forcing”, Linear Algebra and its Applications 439(7): 1862-1874. [ Links ]
Fallat, S.M.; Hogben, L.(2007) “The minimum rank of symmetric matrices described by a graph: a survey", Linear Algebra and its Applications 426(23): 558-582. [ Links ]
Hackney, P.; Harris, B.; Lay, M.; Mitchell, L.H.; Narayan, S.K.; Pascoe, A. (2009) “Linearly independent vertices and minimum semidefinite rank", Linear Algebra and its Applications 431(8): 1105-1115. [ Links ]
Holst, H. (2003) “Graphs whose positive semidefinite matrices have nullity at most two", Linear Algebra and its Applications 375: 1-11. [ Links ]
Horn, R,; Johnson, C. (1985) Matrix Analysis. Cambridge University Press, England. [ Links ]
Hogben, L. (2010) “Minimum rank problems", Linear Algebra and its Applications 432(8): 1961-1974. [ Links ]
Hogben, L. (2008) “Orthogonal representations, minimum rank, and graph complements", Linear Algebra and its Applications 428(11-12): 2560- 2568. [ Links ]
Jianga, Y.; Mitchell, L.H.; Narayan, S.K.(2008) “Unitary matrix digraphs and minimum semidefinite rank", Linear Algebra and its Applications 428(7): 1685-1695. [ Links ]
Mitchell L.(2011) “On the graph complement conjecture for minimum semidefinite rank", Linear Algebra and its Applications 435(6): 1311- 1314. [ Links ]
Mitchell, L.H.; Narayan, S.K.; Zimmerc, A.M. (2010) “Lower bounds in minimum rank problems", Linear Algebra and its Applications 432(1): 430-440. [ Links ]
Narayan, S.; Sharawi, Y. (2014) "Bounds on minimum semidefinite rank of graphs", Linear and Multilinear Algebra 63(4): 774-787. [ Links ]
Nylen, P.M.(1996) “Minimum-rank matrices with prescribed graph", Linear Algebra and its Applications 248(15): 303-316. [ Links ]
Peters, T. (2012) “Positive semidefinite maximum nullity and zero forcing number", Electronic Journal of Linear Algebra 23(): 815-830. [ Links ]
Read, R.; Wilson, R. (1998) An Atlas of Graphs. Oxford University Press, Reino Unido. [ Links ]
Sharawi, Y. (2011) Minimum Semidefinite Rank of a Graph. Ph.D. Dissertation, Mathematics Department, Central Michigan University, Michigan. [ Links ]
West, D.B. (1996) Introduction to Graph Theory . Prentice Hall Inc, Estados Unidos [ Links ]
Received: October 18, 2016; Revised: October 09, 2017; Accepted: October 17, 2017