Mathematics Subject Classification: Primary: 49Q22, 35Q49, 90B06.
Ver contenido completo en PDF.
Artículo
Influencia en la detección de patrones de la solución del sistema no lineal en una transformada Shapelet discreta II
Influence on pattern detection for the solution of the nonlinear system on a discrete Shapelet transform II
1Universidad de La Habana, Facultad de Matemáticas y Computación, La Habana, Cuba; dvs89cs@matcom.uh.cu
2Universidad de La Habana, Facultad de Matemáticas y Computación, La Habana, Cuba; angela@matcom.uh.cu
3Universidad de La Habana, Facultad de Matemáticas y Computación, La Habana, Cuba; mbaguer@matcom.uh.cu
4Universidad de las Islas Baleares, Departamento de Ciencias Matemáticas e Informática, Palma, España; manuel.gonzalez@uib.es
5Universidad de las Islas Baleares, Departamento de Ciencias Matemáticas e Informática, Palma, España; antoni.jaume@uib.es
El uso de wavelets adaptadas para el reconocimiento de patrones es muy atractivo por la multiescalaridad de la transformada wavelet. Sin embargo, el buen desempeño de estos algoritmos en la detección de patrones depende fuertemente de la construcción de los filtros adaptados al patrón de interés. La Transformada Shapelet Discreta II (9) (DST-II) es un algoritmo inspirado en la transformada wavelet, que permite el diseño de filtros a la medida para la detección de patrones en señales unidimensionales. La construcción de estos filtros requiere la solución de un sistema de ecuaciones no lineales, que según (9) se puede efectuar mediante cualquier método iterativo. Esta investigación presenta un novedoso y exhaustivo estudio numérico que demuestra el impacto de la elección del método numérico adecuado para la solución del sistema no lineal en la DST-II. La eficacia de los filtros estimados repercute en el desempeño de esta transformada en la detección de patrones. Los mejores resultados se obtienen al combinar el método de Newton con preiteración mediante el algoritmo de continuación. La convergencia alcanzada para el 55, 37% de los patrones sugiere que la DST-II podría ser adecuada para patrones con formas específicas, de utilidad en aplicaciones sobre señales biomédicas.
Palabras clave: diseño de filtros wavelet; wavelet adaptada; transformada shapelet discreta; transformada wavelet discreta
The use of adapted wavelets for pattern recognition is very attractive because of the multiscalarity of the wavelet transform. However, the good performance of these algorithms in pattern detection strongly depends on the construction of the filters adapted to the pattern of interest. The Discrete Shapelet Transform II (9) (DST-II) is an algorithm inspired by the wavelet transform, which allows the design of tailored filters for pattern detection in one-dimensional signals. The construction of these filters requires the solution of a system of nonlinear equations, which according to (9) can be performed by any iterative method. This research presents a novel and comprehensive numerical study that demonstrates the impact of the choice of the appropriate numerical method for the solution of the nonlinear system in DST-II. The efficiency of the estimated filters has an impact on the performance of this transform in pattern detection. The best results are obtained by combining Newton’s method with preiteration using the continuation algorithm. The convergence achieved for 55,37% of the patterns suggests that DST-II could be suitable for patterns with specific shapes, useful in biomedical signal applications.
Keywords: wavelet filter design; matched wavelet; discrete shapelet transform; discrete wavelet transform.
Mathematics Subject Classification: Primary: 49Q22, 35Q49, 90B06.
Ver contenido completo en PDF.
Agradecimientos
Agradecemos a Proyecto “Métodos numéricos para problemas en múltiples escalas”, Programa Nacional de Ciencias Básicas, PN223LH010-003, Ministerio de Ciencia, Tecnología y Medio Ambiente (CITMA), Cuba; Programa Erasmus+ “Student Mobility for Traineeships” (2021), Universidad de las Islas Baleares y la Universidad de La Habana; Proyecto I+D+i PID2019-104829RAI00 - “EXPLainable Artificial INtelligence systems for health and well-beING (EXPLAINING)”, MCIN/AEI/10.13039/501100011033; y Proyecto I+D+i PID2020-113870GB-I00 - “Desarrollo de herramientas de Soft Computing para la Ayuda al Diagnóstico Clínico y a la Gestión de Emergencias (HESOCODICE)”, MCIN/AEI/10.013039/501100011033.
Referencias
A, Aldroubi; P, Abry; M, Unser. Construction of biorthogonal wavelets starting from any two multiresolutions. IEEE Transactions on Signal Processing 46(1998), no. 4, 1130-1133. doi: 10.1109/78.668563 [ Links ]
D,G, Anderson. Iterative Procedures for Nonlinear Integral Equations. Journal of the ACM 12(1965), no. 4, 547-560. doi: 10.1145/321296.321305 [ Links ]
E,G, Birgin; J,L, Gardenghi; D,S, Marcondes; J,M, Martínez. Accelerated derivative-free spectral residual method for nonlinear systems of equations. arXiv. 2021. doi: 10.48550/arXiv.2104.13447 [ Links ]
R,L, Burden; J,D, Faires; B,A,M. Soluciones numéricas de sistemas de ecuaciones no lineales. 10a ed. Cengage Learning, Mexico, D.F., 2017. [ Links ]
I, Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992. [ Links ]
S, Devuyst. The DREAMS Databases and Assessment Algorithm. Zenodo, ene. de 2005. doi: 10.5281/zenodo.2650142 [ Links ]
A, Field; J, Miles; Z, Field. Discovering Statistics Using R. SAGE Publications Limited, 2012. [ Links ]
R,C, Guido. A note on a practical relationship between filter coefficients and scaling and wavelet functions of Discrete Wavelet Transforms. Applied Mathematics Letters 24(2011), no. 7, 1257-1259. doi: 10.1016/j.aml.2011.02.018 [ Links ]
R,C, Guido. Fusing time, frequency and shape-related information: Introduction to the Discrete Shapelet Transform’s second generation (DST-II). Information Fusion 41(2018), 9-15. doi: 10.1016/j.inffus.2017.07.004 [ Links ]
R,C, Guido. Nearly symmetric orthogonal wavelets for time-frequency-shape joint analysis: Introducing the discrete shapelet transform’s third generation (DST-III) for nonlinear signal analysis. Communications in Nonlinear Science and Numerical Simulation 97(2021), 1-12. doi: 10.1016/j .cnsns.2020.105685 [ Links ]
R,C, Guido et al. Introduction to the Discrete Shapelet Transform and a new paradigm: Joint time-frequency-shape analysis. 2008 IEEE International Symposium on Circuits and Systems (ISCAS). Institute of Electrical y Electronics Engineers (IEEE), 2008, 2893-2896. doi: 10.1109/ISCAS.2008.4542062 [ Links ]
D, Jawali; A, Kumar; C,S, Seelamantula. A Learning Approach for Wavelet Design. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Institute of Electrical y Electronics Engineers (IEEE), 2019, 5018-5022. doi: 10.1109/ICASSP.2019.8682751 [ Links ]
D,A, Knoll; D,E, Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics 193(2004), no. 2, 357-397. doi: 10.1016/j.jcp.2003.08.010 [ Links ]
W, La Cruz; J,M, Martínez; M, Raydan. Spectral Residual Method without Gradient Information for Solving Large-Scale Nonlinear Systems of Equations. Mathematics of Computation 75(2006), no. 255, 1429-1448. url: http://www.jstor.org/stable/4100282. [ Links ]
G,R, Lee et al. PyWavelets: A Python package for wavelet analysis. Journal of Open Source Software 4(2019), no. 36, 1237. doi: 10.21105/joss.01237 [ Links ]
S, Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. 3rd. Academic Press, Burlington, Massachusetts, 2009. doi: 10.1016/B978- 0- 12-374370-1.X0001-8 [ Links ]
H, Mesa. Adapted Wavelets for Pattern Detection. A, Sanfeliu; M,L, Cortés (Eds.). Progress in Pattern Recognition, Image Analysis and Applications. Iberoamerican Congress on Pattern Recognition. Springer, Berlin, Heidelberg, 2005, 933-944. doi: 10.1007/11578079 96 [ Links ]
M, Misiti; Y, Misiti; G, Oppenheim; J-M, Poggi. Wavelets and their Applications. ISTE Ltd, London, 2007. doi: 10.1002/9780470612491 [ Links ]
J,J, Moré; B,S, Garbow; K,E, Hillstrom. User guide for MINPACK-1. Argonne National Laboratory (1980). doi: 10.2172/6997568 [ Links ]
M,J,D, Powell. A Hybrid Method for Nonlinear Equations. Numerical Methods for Nonlinear Algebraic Equations. P, Rabinowitz (Ed.). Gordon and Breach, London, 1970, 87-114. [ Links ]
W,H, Press; S,A, Teukolsky; W,T, Vetterling; B,P, Flannery. Numerical Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press, Cambridge, 2007. [ Links ]
G, Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, Wellesley, Massachusetts, 2019. [ Links ]
Received: March 10, 2023; Accepted: November 14, 2023