Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista de Matemática Teoría y Aplicaciones
versión impresa ISSN 1409-2433
Rev. Mat vol.30 no.2 San José jul./dic. 2023
http://dx.doi.org/10.15517/rmta.v30i2.50449
Artículo
On the relationship between expansión angle of earth-directed CMES and soft X-ray emission from their related flare
Sobre la relación entre el ángulo de expansión de CMES direccionados a la tierra y la emisión de rayos X blandos desde su destello inicial
1Universidad de Costa Rica, Centro de Investigaciones Espaciales (CINESPA), Montes de Oca, San Jose, Costa Rica; carolina.salas_mata@ucr.ac.cr
2Universidad de Costa Rica, Escuela de Matemáticas, Montes de Oca, San Jose, Costa Rica; jesus.sanchez_g@ucr.ac.cr
In space weather, to study the impact of Earth-directed coronal mass ejections (CME) in our terrestrial environment, one of the most important parameters is the propagation speed of these disturbances. We present an improvement of the 3D CME Geometrical Propagation-Expansion Description (3D-CGPED) model developed in previous work to increase the simple that we can use in CME arrival time predictions. This 3D model estimates the arrival time of Earth-directed CMEs at Earth by including a 3D geometry for the CME propagation and expansion in interplanetary space. Since the 3D-CGPED model computes the expansion of the CME based on the radial distance of the CME front, only travel times for CMEs with welldefined shapes seen by coronographs can be estimated. In the present work, we found an empirical relationship between the expansion angle of CMEs with well-defined shapes and the start-to-peak SXR fluence of their associated flares. We applied this relationship in the 3D-CGPED model to obtain the expansion angle for 8 CMEs with an irregular shape. We found similar window errors in arrival time predictions compared to the previous work. This result allows us to complement the 3D-CGPED model to include not only regular shapes but also irregular ones for CMEs observed by coronographs in future works.
Keywords: sun; coronal mass ejections; CME's; solar flare; radio waves.
En clima espacial, en el estudio de los efectos terrestres de las eyecciones de masa coronal (CME) dirigidas a la Tierra, uno de los parámetros más importantes es la rapidez de propagación de estas perturbaciones. En este artículo presentamos una mejora del modelo 3D CME Geometrical Propagation- Expansion Description (3D-CGPED) desarrollado en un trabajo anterior para aumentar la muestra que podemos usar en las predicciones de tiempo de llegada de las CMEs. Este modelo 3D estima el tiempo de llegada a la Tierra de las CMEs al incluir una geometría 3D para la propagación y expansión de la CME en el espacio interplanetario. Dado que el modelo 3DCGPED calcula la expansión de las CMEs en función de la distancia radial del frente de una CME, solo se pueden estimar los tiempos de viaje para las CME con formas bien definidas vistas por los cronógrafos. En el presente trabajo encontramos una relación empírica entre el ángulo de expansión de las CMEs con formas bien definidas y la fluencia SXR de inicio a pico de sus destellos asociados. Aplicamos esta relación en el modelo 3D-CGPED para obtener el ángulo de expansión para 8 CMEs con forma irregular. Encontramos ventanas de errores similares en las predicciones de tiempo de llegada en comparación con el trabajo anterior. Este resultado nos permite complementar el modelo 3D-CGPED en trabajos futuros, para incluir no solo formas regulares sino también irregulares, de CMEs observadas por cronógrafos.
Palabras clave: sol; eyección de masa coronal; CME's; erupción solar; ondas de radio.
Acknowledgements
This study made extensive use of the CME catalogue, generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. GOES data were provided by NOAA and the Solar Data Analysis Center (SDAC) at NASA Goddard Space Flight Center. The data bases of WIND were also used. We would also like to thank graphic designer Nayara Ureña Sánchez for her help with Figures 1 and 2.
References
G, E, Brueckner; et al. The Large Angle Spectroscopic Coronagraph (LASCO). Solar Physics 162(Dec. 1995), 357-402. doi: 10.1007/BF00733434 [ Links ]
G, E, Brueckner; et al. Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophysical Research Letters 25(Jan. 1998), no. 15, 3019-3022. doi: 10.1029/98GL00704 [ Links ]
R, C, Colaninno; A, Vourlidas; C, C, Wu. Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. Journal of Geophysical Research (Space Physics) 118(Nov. 2013), 6866-6879. doi: 10.1002/2013JA019205 [ Links ]
J, M, Darnel; et al. The GOES-R Solar UltraViolet Imager. Space Weather 20(Apr. 2022), no. 4, e2022SW003044. doi: 10.1029/2022SW003044 [ Links ]
H, A, Elliott; et al. An improved expected temperature formula for identifying interplanetary coronal mass ejections. Journal of Geophysical Research (Space Physics) 110(Apr. 2005), A04103. doi: 10.1029/2004JA010794 [ Links ]
C, J, Eyles; et al. The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics 254(Feb. 2009), no. 2, 387-445. doi: 10.1007/s11207-008-9299-0 [ Links ]
N, J, Fox; et al. The Solar Probe Plus Mission: Humanity's First Visit to Our Star. Space Science Reviews 204(Dec. 2016), no. 1-4, 7-48. doi: 10.1007/s11214-015-0211-6 [ Links ]
N, Gopalswamy; A, Lara; M, L, Kaiser. An empirical model to predict the arrival of CMEs at 1 AU. AAS/Solar Physics Division Meeting #31. 2000. Vol. 32. Bulletin of the American Astronomical Society, 825. [ Links ]
N, Gopalswamy; et al. Predicting the 1-AU arrival times of coronal mass ejections. Journal of Geophysical Research (Space Physics) 106(2001), 29207-29218. doi: 10.1029/2001JA000177 [ Links ]
P, K, Manoharan. Evolution of Coronal Mass Ejections in the Inner Heliosphere: A Study Using White-Light and Scintillation Images. Solar Physics 235(May 2006), no. 1-2, 345-368. doi: 10.1007/s11207-006-0100-y [ Links ]
C, Möstl; et al. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. The Astrophysical Journal 787(June 2014), 119. doi: 10.1088/0004-637X/787/2/119 [ Links ]
D, Müller; et al, The Solar Orbiter mission. Astronomy & Astrophysics 642(Sept. 2020), A1. doi: 10.1051/0004-6361/202038467 [ Links ]
C, Salas-Matamoros; K, Klein. On the Statistical Relationship Between CME Speed and Soft X-Ray Flux and Fluence of the Associated Flare. Solar Physics 290(May 2015), no. 5, 1337-1353. doi: 10.1007/s11207-015-0677-0 [ Links ]
C, Salas-Matamoros; K, Klein; G, Trottet. Microwave radio emission as a proxy of CME speed in ICME arrival predictions at 1 AU. Journal of Space Weather and Space Climate (2016), submitted. [ Links ]
C, Salas-Matamoros; J, Sanchez-Guevara, A geometrical description for interplanetary propagation of Earth-directed CMEs based on radiative proxies. Monthly Notices of the Royal Astronomical Society 504(July 2021), no. 4, 5899-5906. doi: 10.1093/mnras/stab1232 [ Links ]
R, Schwenn; A, dal Lago; E, Huttunen; W, D, Gonzalez. The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae 23(2005), 1033-1059. doi: 10.5194/angeo-23-1033-2005 [ Links ]
W, B, Song. An Analytical Model to Predict the Arrival Time of Interplanetary CMEs. Solar Physics 261(Feb. 2010), no. 2, 311-320. doi: 10.1007/s11207-009-9486-7 [ Links ]
B, Vršnak; N, Gopalswamy. Influence of the aerodynamic drag on the motion of interplanetary ejecta. Journal of Geophysical Research (Space Physics) 107(Feb. 2002), 1019. doi: 10.1029/2001JA000120 [ Links ]
B, Vršnak; et al. Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Physics 285(2013), 295-315. doi: 10.1007/s11207-012-0035-4 [ Links ]
Y, M, Wang; et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. Journal of Geophysical Research (Space Physics) 107(Nov. 2002), no. A11, 1340. doi: 10.1029/2002JA009244 [ Links ]
Received: March 31, 2022; Accepted: May 29, 2023