SciELO - Scientific Electronic Library Online

vol.30 issue1Codimension 1 distributions on three dimensional hypersurfaces author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.30 n.1 San José Jan./Jun. 2023 


Information quantifiers and unpredictability in the COVID-19 time-series data

Cuantificadores de información e impredictibilidad en las series temporales asociadas a la COVID-19

Victoria Vampa1 

Andres M. Kowalski2 

Marcelo Losada3 

Mariela Portesi4 

Federico Holik5 

1Universidad Nacional de La Plata, Facultad de Ingeniería, Departamento de Ciencias Basicas, Uidet Matemática Aplicada, La Plata, Argentina;

2 CONICET-UNLP, Instituto de Física La Plata (IFLP), La Plata, Argentina;

3Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina;

4CONICET-UNLP, Instituto de Física La Plata (IFLP), La Plata, Argentina;

5CONICET-UNLP, Instituto de Física La Plata (IFLP), La Plata, Argentina;


We apply different information quantifiers to the study of COVID-19 time series. First, we analyze how the fact of smoothing the curves alters the informational content of the series, by applying the permutation and wavelet entropies to the series of daily new cases using a sliding-window method. In addition, to study how coupled the curves associated with daily new cases of infections and deaths are, we compute the wavelet coherence. Our results show how information quantifiers can be used to analyze the unpredictable behavior of this pandemic in the short and medium terms.

Keywords: Information theory; Permutation entropy; Statistical complexity; Bandt-Pompe methodology; Wavelet transform.


Aplicamos diferentes cuantificadores de información al estudio de series temporales de COVID-19. En primer lugar, analizamos como el hecho de suavizar las curvas altera el contenido de información de la serie, aplicando la entropía de permutaciones y la entropía wavelet a la serie de casos diarios nuevos mediante un método de ventana móvil. Además, para estudiar que tan acopladas están las curvas asociadas con los nuevos casos diarios de infecciones y muertes, calculamos la coherencia wavelet. Nuestros resultados muestran como se pueden utilizar cuantificadores de información para analizar el comportamiento impredecible de esta pandemia en el corto y mediano plazo.

Palabras clave: Teoría de la información; Entropía de permutaciones; Complejidad estadística; Metodología de Bandt-Pompe; Transformada Wavelet.

Mathematics Subject Classification: 05C15, 05C30, 05C38, 05C51, 05C82

Ver contenido completo en PDF.

Acknowledgments and funding

ML, MP and FH acknowledge support from the National Research Council (CONICET), Argentina. AMK is supported by Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina. Financial assistance from UNLP under the projects 11/I250 and 11/X812, and from CONICET under the project PIP 519, is also acknowledged. FH was partially funded by the project “Per un’estensione semantica della Logica Computazionale Quantistica- Impatto teorico e ricadute implementative”, Regione Autonoma della Sardegna, (RAS: RASSR40341), L.R. 7/2017, annualita 2017- Fondo di

Sviluppo e Coesione (FSC) 2014-2020.


M,B, Arouxet; A,F, Bariviera; V,E, Pastor; V, Vampa. COVID-19 impact on cryptocurrencies: evidence from a wavelet-based Hurst exponent, Physica A 596(2022), 127170. Doi: 10.1016/j.physa.2022.127170 [ Links ]

C, Bandt; B, Pompe. Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett. 88(2002), 174102. Doi: 10.1103/PhysRevLett.88.174102 [ Links ]

S, Blanco; A, Figliola; R, Quian Quiroga; O,A, Rosso; E, Serrano. Time-frequency analysis of electroencephalogram series. III. Wavelet packets and information cost function. Phys. Rev. E 57(1998), 932. Doi: 10.1103/PhysRevE.57.932 [ Links ]

C, Chum. An Introduction to Wavelets, Academic Press, New York, 1992. Available from: [ Links ]

J, Contreras-Reyes. Fisher information and uncertainty principle for skewgaussian random variables, Fluctuation and Noise Letters 20(2021) no.5, 21500395. Doi: 10.1142/S0219477521500395 [ Links ]

I, Daubechies. Ten Lectures on Wavelets, SIAM, 61, 1992. Doi: 10.1137/ [ Links ]

L, Fernandes; F, Araujo; M, Silva; B, Acioli-Santos. Predictability of COVID-19 worldwide lethality using permutation-information theory quantifiers, Results in Physics 26(2021) 104306. Doi: 10.1016/j.rinp.2021.104306 [ Links ]

L, Fernandes; F, Araujo; J, Silva; M, Silva. Insights into the predictability and similarity of COVID-19 worldwide lethality, Fractals 29(2021), no. 07, 2150221. Doi: 10.1142/S0218348X21502212 [ Links ]

L, Gamero; A, L, Plastino; M, E, Torres. Wavelet analysis and nonlinear dynamics in a nonextensive setting, Physica A 246(1997), 487-509. Doi: 10.1016/S0378-4371(97)00367-1 [ Links ]

M, Henry; G, Judge. Permutation entropy & information recovery in nonlinear dynamic economic time series, Econometrics 7(2019) no. 1, 10. Doi: 10.3390/econometrics7010010 [ Links ]

A,M, Kowalski; M, Portesi, V, Vampa; M, Losada; F, Holik. Entropy-based informational study of the COVID-19 series of data, Mathematics 10(2022), no. 23, 4590. Doi: 10.3390/math10234590 [ Links ]

A, M, Kowalski; R, Rossignoli; E, M, F, Curado. Eds. Concepts and Recent Advances in Generalized Information Measures and Statistics, Bentham Science Publishers 2013. Doi: 10.2174/97816080576031130101 [ Links ]

M, Kumar; R, Pachori; U, Acharya. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework, Entropy 19(2017), no. 9, 488. Doi: 10.3390/e19090488 [ Links ]

X, Li; G, Ouyang; D, Richards. Predictability analysis of absence seizures with permutation entropy, Epilepsy Research 77(2007), 70-74. Doi: 10.1016/j.eplepsyres.2007.08.002 [ Links ]

D, Meintrup; M, Nowak-Machen; S, Borgmann. Nine Months of COVID-19 Pandemic in Europe: A Comparative Time Series Analysis of Cases and Fatalities in 35 Countries, International Journal of Environmental Research and Public Health 18(2021), no. 12, 6680. Doi: 10.3390/ijerph18126680 [ Links ]

F, Mitroi-Symeonidis; I, Anghel; O, Lalu; C, Popa. The Permutation Entropy and its Applications on Fire Tests Data, J. Appl. Comput. Mech. 6(2020), no. SI, 1380-1393. Doi: 10.22055/jacm.2020.34707.2464f [ Links ]

F, Mitroi-Symeonidis; I, Anghel; A, Tozzi. Preventing a COVID-19 pandemic flashover (electronic response to: Day M. 2020. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village), 2020. Doi: 10.13140/RG.2.2.34525.97768 [ Links ]

O, Nicolis; J, Mateu; J, Contreras-Reyes. Wavelet-Based Entropy Measures to Characterize Two-Dimensional Fractional Brownian Fields, Entropy 22(2020), no. 2, 196. Doi: 10.3390/e22020196 [ Links ]

G, Ouyang. Permutation entropy, 2021. Available at: Retrieved June 23, 2021. [ Links ]

F, Olivares; A, L, Plastino; O, A, Rosso. Ambiguities in Bandt-Pompe’s methodology for local entropic quantifiers, Physica A 391(2012), 2518-2526. Doi: 10.1016/j.physa.2011.12.033 [ Links ]

G, Ouyang; J, Li; X, Liu; X, Li. Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis, Epilepsy Research 104(2013), no. 3, 246-252. Doi: j.eplepsyres.2012.11.003 [ Links ]

H, Ritchie; E, Ortiz-Ospina; D, Beltekian; E, Mathieu; J, Hasell; B, Macdonald; C, Giattino; C, Appel; L, Rodes-Guirao; M, Roser. Coronavirus Pandemic (COVID-19), 2020. Available at ]

O, A, Rosso; H, Larrondo; M, T, Martin; A, L, Plastino; M, Fuentes. Distinguishing Noise from Chaos, Phys. Rev . Lett . 99(2007) 154102. Doi: 10.1103/PhysRevLett.99.154102 [ Links ]

O, A, Rosso; L, De Micco; H, Larrondo; M, Martin; A, L, Plastino. Generalized statistical complexity measure, Int. J. Bif. and Chaos 20(2010), 775-785. Doi: 10.1142/S021812741002606X [ Links ]

O, A, Rosso; L, De Micco; A, L, Plastino; H, Larrondo. Info-quantifiers’ map-characterization revisited. Physica A 389(2010), 4604-4612. Doi: 10.1016/j.physa.2010.06.055 [ Links ]

V, Solovieva; A, Bielinskyia; N, Kharadzjana. Coverage of the coronavirus pandemic through entropy measures, in: CS & SE SW 2020: 3rd Workshop for Young Scientists in Computer Science & Software Engineering, Kryvyi Rih, Ukraine, 2020, 24-42. Available at: [ Links ]

C, Torrence; G, Compo. A, Practical Guide toWavelet Analysis, Bulletin of the American Meteorological Society, 79(1998): no. 1. Doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 [ Links ]

E, Valverde; G, Clemente; P, Arini; V, Vampa. Wavelet-based entropy and complexity to identify cardiac electrical instability in patients post myocardial infarction, Biomedical Signal Processing and Control 69(2021), 102846. Doi: 10.1016/j.bspc.2021.102846 [ Links ]

M, Zanin; L, Zunino; O, A, Rosso; D, Papo. Permutation entropy and its main biomedical and econophysics applications: a review, Entropy 14(2012), no. 8, 1553-1577. Doi:10.3390/e14081553 [ Links ]

S, Zozor; M, Portesi; P, W, Lamberti; G, M, Bosyk; J, F, Bercher. (Eds), Entropies, Divergences, Information, Identities and Inequalities, Entropy Special Issue (2021). Available at ]

Received: April 01, 2022; Revised: March 03, 2022; Accepted: October 18, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License