SciELO - Scientific Electronic Library Online

 
vol.29 issue2Fractional-order optimal control for a model of tuberculosis treatment efficacy in the presence of HIV/aids and diabetesMaximum likelihood estimation of ruin probability in the classical risk model with exponential claims author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.29 n.2 San José Jul./Dec. 2022

http://dx.doi.org/10.15517/rmta.v29i2.46390 

Artículo

Cosmological exact solutions of Petrov type D. a mixture of two fluids: dark energy and radiation

Soluciones cosmológicas exactas del tipo Petrov D. una mezcla de dos fluidos: energía oscura y radiación

Rodrigo Alvarado Marín1 

Andrés A. Angulo Sibaja2 

Mauricio Vargas Obando3 

1Universidad de Costa Rica, Centro de Investigaciones Espaciales (CINESPA) y Escuela de Física, San José, Costa Rica; rodrigo.alvarado@ucr.ac.cr

2Universidad de Costa Rica, Escuela de Física, San José, Costa Rica; andres.angulosibaja@ucr.ac.cr

3Universidad de Costa Rica, Escuela de Física, San José, Costa Rica; mauricio.vargasobando@ucr.ac.cr

Abstract

In this paper, two exact solutions of the Einstein's equations are obtained for an anisotropic and homogeneous symmetry of Petrov Type D, the difference between both solutions lies in how relevant is the expansión that is presented initially, either on an axis or on a perpendicular plane. Both solutions represent a mixture of two fluids with minimum interaction: dark energy (P = -µ) and radiation (P = µ/3). The singularities and the influence that these fluids have on this metric are studied; the Hubble parameters, the deceleration parameter and the role that these fluids representon them are determined and analyzed. Additionally, their temperatura and the role that both play on this magnitude are determined.

Keywords: cosmology; exact solution; Einstein; temperature; Hubble; deceleration parameter; Kretschmann; singularity.

Resumen

En este trabajo se obtienen dos soluciones exactas de las ecuaciones de Einstein para una simetría anisotrópica y homogénea del Tipo Petrov D, la diferencia entre ambas soluciones radica en que tan relevante es la expansión que se presenta inicialmente, ya sea en un eje o en un plano perpendicular. Dichas soluciones representan una mezcla de dos fluidos con mínima interacción: energía oscura (P = -µ) y radiación (P = µ/3). Se estudia las singularidades y la influencia que estos fluidos tienen en esta métrica; así como el parámetro de Hubble, el parámetro de desaceleración y la influencia que estos fluidos tienen en ellos. Además, se determina su temperatura y el papel que ambos juegan en esta magnitud.

Palabras clave: cosmología; solución exacta; Einstein; temperatura; Hubble; parámetro de deceleración; Kretschmann; singularidad.

-

Mathematics Subject Classification: 83C15, 83C56, 83C75.

Ver contenido completo en PDF.

Acknowledgments

The authors would like to express their gratitude to the referees, whose recommendations and comments contributed to improve the paper's quality, as well as other reviewers for their valuable contributions to the article's content.

Referencias

R, Alvarado. Cosmological exact solutions set of a perfect fluid in an anisotropic space-time in Petrov type D, Advanced Studies in Theoretical Physics 10 (2016), no. 6, 267-295. Doi: 10.12988/astp.2016.6311 [ Links ]

R, Alvarado. The Hubble constant and the deceleration parameter in anisotropic cosmological spaces of Petrov type D, Advanced Studies in Theoretical Physics 10 (2016), no. 8, 421-431. Doi: 10.12988/astp.2016.6930 [ Links ]

R, Alvarado. Thermodynamics and small temporal variations in the equations of state of anisotropic cosmological models of Petrov type D, Advanced Studies in Theoretical Physics 11 (2017), no. 1, 9-17. Doi: 10.12988/astp.2017.6932 [ Links ]

R, Alvarado. Exact cosmological solutions of isobaric scalar fields in space-times: anisotropic of the type of Petrov D and isotropic homogeneous, Advanced Studies in Theoretical Physics 12 (2018), no. 7, 319-333. Doi: 10.12988/astp.2018.8937 [ Links ]

C,L, Chang; K,M, Huffenberger; B,A, Benson; F, Bianchini; J, Chluba; J, Delabrouille;. . .; C, Zhang. Cosmic microwave background measurements, Snowmass Cosmic Frontier, arXiv, 2021. 2203.07638v1 (astro-ph.CO).arxiv.org/pdf/2203.07638v1Links ]

I, Dimitrijevic; B, Dragovich; A,S, Koshelev; Z, Rakic; J, Stankovic. Some cosmological solutions of a new nonlocal gravity model, arXiv, 2020, 2006.16041 (gr-qc). arxiv.org/abs/2006.16041Links ]

R, Durrer. The cosmic microwave background: The history of its experimental investigation and its significance for cosmology, Classical and Quantum Gravity 32 (2015), no. 12, 124007. Doi: 10.1088/0264-9381/32/12/124007 [ Links ]

O, Farooq; B, Ratra. Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift, The Astrophysical Journal 766 (2013), no. 1, L7. Doi: 10.1088/2041-8205/766/1/L7 [ Links ]

D, Huterer. The accelerating universe, Adventures in Cosmology (2011), 321-353. arXiv, 2011. 1010.1162v3 (astro-ph.CO). arxiv.org/abs/1010.1162Links ]

J,A,S, Lima; R,F,L, Holanda; J,V, Cunha. Are galaxy clusters suggesting an accelerating universe independent of SNe Ia and Gravity Metric Theory?, AIP Conference Proceedings 1241 (2010), 224-229. Doi: 10.1063/1.3462638 [ Links ]

A,M, Lopez; R,G, Clowes; G,M, Williger. A giant arc on the sky, arXiv, 2022. 2201.06875 (astro-ph.CO). Doi: 10.48550/arXiv.2201.06875 [ Links ]

J,C, Mather; E,S, Cheng; R,E, Eplee; R,B, Isaacman; S,S, Meyer; R,A, Shafer; . . . ; D,T, Wilkinson. A preliminary measurement of the cosmic microwave background spectrum by the cosmic background explorer (COBE) satellite, Astrophysical Journal Letters 354 (1990), L37. Doi: 10.1086/185717 [ Links ]

D, Mihu. Dynamical fluid-type universe scenario with dust and radiation, arXiv, 2016. 1609.00589v2 (gr-qc). Doi: 10.48550/arXiv.1609.00589 [ Links ]

S, Perlmutter; G, Aldering; G, Goldhaber; R,A, Knop; P, Nugent; P,G, Castro;...;W,J, Couch. Measurements of omega and lambda from 42 highredshift supernovae, The Astrophysical Journal 517 (1999), 565-586. Doi: 10.48550/arXiv.astro-ph/9812133 [ Links ]

A,G, Riess; A,V, Filippenko; P, Challis; A, Clocchiatti; A, Diercks; P,M, Garnavich; . . . ; R,P, Kirshner. Observational evidence from supernovae for an accelerating universe and a cosmological constant, The Astronomical Journal 116 (1998), no. 3, 1009-1038. Doi: 10.1086/300499 [ Links ]

A,G, Riess; L,-G, Strolger; J, Tonry; S, Casertano; H,C, Ferguson; B, Mobasher; . . . ; Z, Tsvetanov. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution, The Astrophysical Journal 607 (2004), no. 2, 665-687. Doi: 10.1086/383612 [ Links ]

B, Saha; H, Amirhashchi; A, Pradhan. Two-fluid scenario for dark energy models in an FRW universe-revisited, Astrophysics and Space Science 342 (2012), 257-267. Doi: 10.1007/s10509-012-1155-x [ Links ]

R, Sussman; D, Pavón. Exact inhomogeneous cosmologies whose source is a radiation-matter mixture with consistent thermodynamics, Physical Review D 60 (1999), 104023. Doi: 10.1103/PhysRevD.60.104023 [ Links ]

M, Tsamparlis. A. Paliathanasis. Three-fluid cosmological model using Lie and Noether symmetries, Classical and Quantum Gravity 29 (2011), no. 1, 015006. Doi: 10.48550/arXiv.1111.5567 [ Links ]

Received: April 20, 2021; Revised: May 12, 2022; Accepted: May 30, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License