SciELO - Scientific Electronic Library Online

 
vol.28 número1Condiciones de existencia para la constante de olson k-baricéntrica índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista de Matemática Teoría y Aplicaciones

versión impresa ISSN 1409-2433

Rev. Mat vol.28 no.1 San José ene./jul. 2021

http://dx.doi.org/10.15517/rmta.v28i1.42154 

Artículo

Notes on coherent systems

Notas sobre los sistemas coherentes

Alexander H.W. Schmitt1 

1Freie Universität Berlin; Institut für Mathematik; Arnimallee 3; D-14195 Berlin, Germany; alexander.schmitt@fu-berlin.de

Abstract

We present an alternative approach to semistability and moduli spaces for coherent systems associated with decorated vector bundles. In this approach, it seems possible to construct a Hitchin map. We relate some examples to classical problems from geometric invariant theory.

Keywords: coherent system; moduli space; Hitchin map; first fundamental theorem of invariant theory.

Resumen

En estas notas se presenta un nuevo enfoque para el estudio de las condiciones de semi-estabilidad, así como de los espacios de móduli, de los sistemas coherentes asociados a fibrados vectoriales con estructura adicional. Bajo este enfoque, se abre la posibilidad de definir un morfismo de Hitchin. Se muestra, además, la relación entre algunos ejemplos concretos con problemas clásicos presentes en la teoría geométrica de invariantes.

Palabras clave: sistema coherente; espacio de móduli; morfismo de Hitchin; primer teorema fundamental de la teoría de invariantes.

Mathematics Subject Classification: 14H40, 14D20, 13A50.

Ver contenido complete en PDF.

Acknowledgements

Leticia Brambila-Paz brought the problem of studying coherent Higgs systems to my attention. It was formulated by Bradlow, Brambila-Paz, García-Prada, and Gothen and served as starting point for [34] and this note. Bradlow, BrambilaPaz, García-Prada, and Gothen and Brambila-Paz and Edgar I. Castañeda-González are carrying out independent research on the case of coherent Higgs systems. Their results will appear in forthcoming papers. I thank Peter Newstead for the references [14] and [38] and Ángel Muñoz Castañeda for the translation of the title and the abstract into Spanish. I am also grateful to Luisa González Campos and Ronald Zuñiga Rojas for their hospitality during my visit to Costa Rica for the XXII SIMMAC.

References

M, Bader. Quivers, geometric invariant theory, and moduli of linear dynamical systems, Linear Algebra Appl. 428(2008), no. 11-12, 2405-3034. Doi: 10.1016/j.laa.2007.11.027 [ Links ]

M, Bhargava; W, Ho; A, Kumar. Orbit parametrizations for K3 surfaces, Forum Math. Sigma 4(2016), no. e18. Doi: 10.1017/fms.2016.12 [ Links ]

S, B, Bradlow. Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33(1991), no. 1, 169-213. Doi: 10. 4310/jdg/1214446034 [ Links ]

S,B, Bradlow; O, García-Prada. An application of coherent systems to a Brill-Noether problem, J. reine angew. Math. 551(2002), 123-143. Doi: 10.1515/crll.2002.079 [ Links ]

I, Dolgachev. Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, vol. 296, Cambridge University Press, Cambridge, 2003. Doi: 10.1017/CBO9780511615436 [ Links ]

T,L, Gómez; A, Langer; A,H,W, Schmitt; I, Sols. Moduli spaces for principal bundles in large characteristic, Teichmüller theory and moduli problem, 281-371, Ramanujan Math. Soc. Lect. Notes Ser., vol. 10, Ramanujan Math. Soc., Mysore, 2010. Doi: 10.1016/j.aim.2008.05.015 [ Links ]

E, González; P, Solis; Ch,T, Woodward. Stable gauged maps, in: Algebraic geometry (Salt Lake City 2015), 243-275, Proc. Sympos. Pure Math., vol. 97.1, Amer. Math. Soc., Providence RI, 2018. https://arxiv. org/abs/1606.01384 [ Links ]

R, Hartshorne. Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977. Doi: 10.1007/ 978-1-4757-3849-0 [ Links ]

M, Hazewinkel. (Fine) moduli (spaces) for linear systems: what are they and what are they good for?, in: C,I, Byrnes; C,F, Martin. (Eds.) Geometrical Methods for the Study of Linear Systems, Nato Advanced Study Institutes Series (Series C - Mathematical and Physical Sciences), vol 62. Springer, Dordrecht, 1980. Doi: 10.1007/978-94-009-9082-1_3 [ Links ]

D, Hilbert. Ueber die Theorie der algebraischen Formen, Math. Ann. 36(1890), 473-534. Doi: 10.1007/BF01208503 [ Links ]

D, Hilbert. Ueber die vollen Invariantensysteme, Math. Ann. 42(1893), no. 3, 313-373. Doi: 10.1007/BF01444162 [ Links ]

D, Hinrichsen; D, Prätzel-Wolters. A wild quiver in linear systems theory, Linear Algebra Appl. 91(1987), 143-175. Doi: 10.1016/ 0024-3795(87)90068-1 [ Links ]

N,J,Hitchin.The self-duality equations on a Riemann surface, Proc. London Math. Soc. s3-55(1987), 59-126. Doi: 10.1112/plms/s3-55.1. 59 [ Links ]

G,H, Hitching; M, Hoff; P,E, Newstead. Nonemptiness and smoothness of twisted Brill-Noether loci, Ann. Mat. Pura Appl. 4(2020), 25 pp. Doi: 10. 1007/s10231-020-01009-x [ Links ]

A,D, King; P,E, Newstead. Moduli of Brill-Noether pairs on algebraic curves, Internat. J. Math. 6(1995), no. 5, 733-748. Doi: 10.1142/ S0129167X95000316 [ Links ]

H, Lange. Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47(1984), no. 1-3, 263-269. Doi: 10. 1007/BF01174597 [ Links ]

H, Lange; M,S, Narasimhan. Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266(1983), no. 1, 55-72. Doi: 10.1007/ BF01458704 [ Links ]

H, Lange; P,E, Newstead. Coherent systems of genus 0, Internat. J. Math. 15(2004), no. 4, 409-424. Doi: 10.1142/S0129167X04002326 [ Links ]

J, Le Potier. Systèmes Cohérents et Structures de Niveau, Astérisque, vol. 214, 1993. http://www.numdam.org/item/AST_1993__214__ 1_0/Links ]

M, Lübke; A, Teleman. The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc., vol. 183, 2006. Doi: 10.1090/memo/0863 [ Links ]

I, Mundet i Riera. A Hitchin-Kobayashi correspondence for Kähler fibrations, J. reine angew. Math. 528(2000), 41-80. https://arxiv.org/ abs/math/9901076 [ Links ]

D, Mumford; J, Fogarty; F, Kirwan. Geometric Invariant Theory, 3rd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994. [ Links ]

Ch, Okonek; A, Schmitt; A, Teleman. Master spaces for stable pairs, Topology 38(1999), no. 1, 117-139. Doi: 10.1016/ S0040-9383(98)00006-8 [ Links ]

S,Y, Oudot. Persistence Theory: From Quiver Representations to Data Analysis, Mathematical Surveys and Monographs, vol. 209, American Mathematical Society, Providence RI, 2015. [ Links ]

V,L, Popov; E,B, Vinberg. Invariant theory, in: Algebraic Geometry 4, Encycl. Math. Sci., vol. 55, 1994; translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, vol. 55, 1989, pp. 137-309. [ Links ]

N, Raghavendra; P,A, Vishwanath. Moduli of pairs and generalized theta divisors, Tohoku Math. J. (2) 46(1994), no. 3, 321-340. Doi: 10.2748/ TMJ/1178225715 [ Links ]

Z, Reichstein. Stability and equivariant maps, Invent. Math. 96(1989), 349-383. Doi: 10.1007/BF01393967 [ Links ]

A,H,W,Schmitt.Projective moduli for Hitchin pairs, Internat. J. Math. 9(1998), no. 1, 107-118; erratum, Internat. J. Math. 11(2000), no. 4, 589. Doi: 10.1142/S0129167X98000075 [ Links ]

A,H,W,Schmitt. Moduli problems of sheaves associated with oriented trees, Algebr. Represent. Theory 6(2003), no. 1, 1-32. Doi: 10.1023/ A:1022322529046 [ Links ]

A,H,W,Schmitt.A universal construction for moduli spaces of decorated vector bundles over curves, Transform. Groups 9(2004), no. 2, 167-209. Doi: 10.1007/s00031-004-7010-6 [ Links ]

A,H,W,Schmitt.Global boundedness for decorated sheaves, Int. Math. Res. Not. 68(2004), 3637-3671. Doi: 10.1155/ S1073792804141652 [ Links ]

A,H,W,Schmitt.Geometric Invariant Theory and Decorated Principal Bundles, Zurich Lectures in Advanced Mathematics, vol. 11, European Mathematical Society, Zürich, 2008. [ Links ]

A,H,W,Schmitt.Semistability and instability in products and applications, in: V, Bouchard; C, Doran; S, Méndez-Diez; C, Quigley. (Eds.) StringMath 2014, Proc. Sympos. Pure Math., vol. 93, Amer. Math. Soc., Providence RI, 2016, pp. 201-214. [ Links ]

A,H,W,Schmitt.A general notion of coherent systems. https://www.hal. archives-ouvertes.fr/hal-02391836/document Links ]

M, Schottenloher. Geometrie und Symmetrie in der Physik, Vieweg+Teubner Verlag, Wiesbaden, 1995. Doi: 10.1007/ 978-3-322-89928-6 [ Links ]

G, W, Schwarz. On classical invariant theory and binary cubics, Ann. Inst. Fourier (Grenoble), 37(1987), no. 3, 191-216. Doi: 10.5802/aif. 1104 [ Links ]

B, Sturmfels. Algorithms in Invariant Theory, 2nd edition, Texts and Monographs in Symbolic Computation, Springer, Vienna, 2008. Doi: 10.1007/978-3-211-77417-5 [ Links ]

M, Teixidor i Bigas; L,W, Tu. Theta divisors for vector bundles, in: R, Donagi. (Ed.) Curves, Jacobians, and Abelian Varieties, Contemporary Mathematics, vol. 136, Amer. Math. Soc., Providence RI, 1992, pp. 327-342. https://bookstore.ams.org/conm-136 Links ]

M, Thaddeus. Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117(1994), no. 2, 317-353. Doi: 10.1007/BF01232244 [ Links ]

Received: June 02, 2020; Revised: November 04, 2020; Accepted: November 12, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License