SciELO - Scientific Electronic Library Online

vol.27 número2Matheurísticas para resolver el problema de ruteo de vehículos con ventanas de tiempoUn modelo estocástico de germinación índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay articulos similaresSimilares en SciELO


Revista de Matemática Teoría y Aplicaciones

versión impresa ISSN 1409-2433

Rev. Mat vol.27 no.2 San José jul./dic. 2020ículo 


Associative classification with multiobjective tabu search

Clasificación asociativa con búsqueda tabú multiobjetivo

Ricardo P. Beausoleil1 

1Instituto de Cibernética Matemática y Física, Departamento de Matemática Interdisciplinaria, La Habana, Cuba;


This paper presents an application of Tabu Search algorithm to association rule mining. We focus our attention specifically on classification rule mining, often called associative classification, where the consequent part of each rule is a class label. Our approach is based on seek a rule set handled as an individual. A Tabu search algorithm is used to search for Pareto-optimal rule sets with respect to some evaluation criteria such as accuracy and complexity. We apply a called Apriori algorithm for an association rules mining and then a multiobjective tabu search to a selection rules. We report experimental results where the effect of our multiobjective selection rules is examined for some well-known benchmark data sets from the UCI machine learning repository.

Keywords: combinatorial data analysis; associative classification; tabu search; multiobjective optimization.


Este artículo presenta una aplicación de Búsqueda Tabu Multiobjetivo a la minería de reglas de asociación. Centramos nuestra atención específicamente en la minería de reglas de clasificación, frecuentemente llamada clasificación asociativa, donde la parte consecuente es una clase. Nuestro enfoque se basa en la búsqueda de un conjunto de reglas manipulado como un individuo para la clasificación. Un algoritmo de Búsqueda Tabu es utilizado para encontrar conjuntos de reglas Pareto-Óptimo con respecto a algunos criterios tales como exactitud y complejidad. Aplicamos el siguiente algoritmo de A priori para la extracción de las reglas de asociación del problema en cuestión y entonces una búsqueda Tabu multiobjetivo es realizada para seleccionar subconjuntos de reglas. Reportamos experimentos donde es examinado el efecto de la selección multiobjetivo para algunos conjuntos de datos bien conocidos de la base de datos del almacén de máquinas de aprendizaje de la UCI.

Palabras clave: análisis de datos combinatorio; clasificación asociativa; búsqueda tabú; optimización multiobjectivo.

Mathematics Subject Classification: 90C27, 90C29, 90C30, 90B50, 93B40.

Ver contenido complete en PDF.


R, Agrawal; H, Mannila; R, Srikant; H, Toivonen; A,I, Verkamo. Fast discovery of association rules, in: U,M, Fayyad; G, Piatetsky-Shapiro; P, Smyth; & R, Uthurusamy. (Eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park CA. 17(1996), No.3, 307-328. [ Links ]

R,J, Bayardo; R, Agrawal. Mining the most interesting rules, Proc. of 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (1999) 145-154. Doi: 10.1145/312129.312219 [ Links ]

R,P, Beausoleil; R, Montejo. A study with neighborhood searches to deal with multiobjective unconstrained permutation problems, Journal of Industrial and Management Optimization, 5,(2009), No. 2, 193-216. Doi: 10. 3934/jimo.2009.5.193 [ Links ]

R,P, Beausoleil MOSS-II: Tabu/Scatter Search for nonlinear multiobjective optimization, in: Z, Michalewicz; & P, Siarry. (Eds.) Advances in Metaheuristics for Hard Optimization, Natural Computing Series, Springer, Berlin Heidelberg, 2007, pp. 39-67. Doi: 10.1007/ 978-3-540-72960-0_3 [ Links ]

C, Blake; E, Keogh; C,J, Merz. UCI Repository of machine learning repository, University of California, Irvine (1998). Available at http:// ]

F, Glover. Future paths for integer programming and links to artificial intelligence, Computers and Ops. Res. 13(1986), no. 5, 533-549. Doi: 10. 1016/0305-0548(86)90048-1. [ Links ]

B, de la Iglesia; M,S, Philpott; A,J, Bagnall; V,J, Rayward-Smith. Data mining rules using multi-objective evolutionary algorithm, Proc. of 2003, Congress on Evolutionary Computation, Canberrra, Australia, 3, 2003, pp. 1552-1559. Doi:10.1109/CEC.2003.1299857 [ Links ]

B, de la Iglesia; A, Reynolds; V,J, Rayward-Smith. Developments on a multi-objective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules, in: C,A, Coello Coello; A, Hernández Aguirre; E, Zitzler. (Eds) Evolutionary Multi-Criterion Optimization, Lecture Notes on Computer Science 3410, Springer, Berlin, 2005, pp. 826-840. Doi:10. 1007/978-3-540-31880-4_57 [ Links ]

B, de la Iglesia; G, Richards; M,S, Philpott; V,J, Rayward-Smith. The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification, European Journal of Operational Research 169(2006), no. 3, 898-917. Doi: 10.1016/j.ejor.2004.08.025 [ Links ]

H, Ishibuchi; S, Namba. Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems, in: X, Yao; et al. (Eds.) Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 3242. Springer, Berlin, 2004, pp. 1123-1132. Doi:10.1007/ 978-3-540-30217-9_113 [ Links ]

H, Ishibuchi; Y, Nojima. Accuracy-complexity tradeoff analysis by multiobjective rule selection, Proc. of ICDM 2005, Workshop on Computational Intelligence in Data Mining, 2005, pp. 39-48. [ Links ]

W, Li; J, Han; J, Pei. CMAR: Accurate and efficient classification based on multiple class-association rules, Proc. of 1st IEEE International Conference on Data Mining, San José CA, 2001, pp. 369-376. Doi: 10.1109/ ICDM.2001.989541. [ Links ]

B, Liu; W, Hsu; Y, Ma. Integrating classification and association rule mining, Proc. 4th International Conference on Knowledge Discovery and Data Mining, 1998, pp. 80-86. [ Links ]

F, A, Lootsma. Scale sensitivity in the multiplicative AHP and SMART, Journal of Multi-Criteria Decision Analysis 2(1993), no. 2, 87-110. Doi: 10.1002/mcda.4020020205 [ Links ]

S, Mutter; M, Hall; E, Frank. Using classification to evaluate the output of confidence based association rule mining, in: G,I, Webb; X, Yu. (Eds.) Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 3339, Springer, Berlin, 2004, pp. 538-549. Doi: 10.1007/ 978-3-540-30549-1_47 [ Links ]

F, Thabtah; P, Cowling; S, Hammoud. Improving rule sorting, predictive accuracy and training time in associative classification, Expert Systems with Applications, 31(2006), no. 2, 414-426. Doi: 10.1016/j.eswa. 2005.09.039. [ Links ]

F, Thabtah; P, Cowling; Y, Peng. MCAR: Multi-class classification based on association rule, IEEE International Conference on Computer Systems and Applications, Cairo, Egypt, (2005), pp. 127-133. Doi: 10.1109/ AICCSA.2005.1387030 [ Links ]

I,H, Witten; E, Frank; M,A, Hall. Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco CA, 2011. Doi: 10.1016/C2009-0-19715-5 [ Links ]

Received: June 25, 2019; Revised: November 11, 2019; Accepted: February 06, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License