SciELO - Scientific Electronic Library Online

vol.22 número2A visualization of null geodesics for the bonnor massive dipoleThe octopuses species índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista de Matemática Teoría y Aplicaciones

versão impressa ISSN 1409-2433

Rev. Mat vol.22 no.2 San José Jul./Dez. 2015



Slowly rotating curzon-chazy metric

Métrica de curzon-chazy con rotación lenta

Paulo Montero-Camacho 1  

Francisco Frutos-Alfaro 2  

Carlos Gutiérrez-Chaves 3  

Iván Cordero-García 4  

1School of Physics, University of Costa Rica, San José, Costa Rica. E-Mail:

2 School of Physics, University of Costa Rica, San José, Costa Rica. E-Mail:

3 School of Physics, University of Costa Rica, San José, Costa Rica. E-Mail:

4 School of Physics, University of Costa Rica, San José, Costa Rica. E-Mail:


A new rotation version of the Curzon-Chazy metric is found. This new metric was obtained by means of a perturbation method, in order to include slow rotation. The solution is then proved to fulfill the Einstein's equations using a REDUCE program. Furthermore, the applications of this new solution are discussed.

Keywords: general relativity; solutions of Einstein's equations; approximation procedures; weak fields


Se encontró una nueva versión rotante de la métrica de Curzon-Chazy. Esta nueva métrica fue obtenida por medio de un método perturbativo para incluir rotación lenta. Se prueba que la métrica obtenida es solución a las ecuaciones de Einstein por medio de un programa en REDUCE. Finalmente, se discuten las aplicaciones de esta nueva solución.

Palabras clave: relatividad general; soluciones de las ecuaciones de Einstein; procedimientos de aproximación; campos débiles

Ver contenido en pdf


Abdelqader, M.; Lake, K. (2012) "Visualizing Spacetime Curvature via Gradient Flows II: An Example of the Construction of a Newtonian analogue", Physical Review 86, 124037 (ArXiv:1207.5496v2 [gr-qc]). [ Links ]

Arianrhod, R; Fletcher, S; McIntosh, C. (1991) "Principal null directions of the Curzon metric", Classical and Quantum Gravity 8(8): 1519-1528. [ Links ]

Belinski, V; Verdaguer, E. (2004) Gravitational Solitons. Cambridge University Press, United Kingdom. [ Links ]

Carmeli, M. (2001) Classical Fields. World Scientific Publishing, Singapore. [ Links ]

Chandrasekhar, S. (2000) The Mathematical Theory of Black Holes. Oxford, United Kingdom. [ Links ]

Chazy, J. (1924) "Sur le champ de gravitation de deux masses fixes dans la théorie de la relativité", Bulletin de la Société Mathématique de France 52: 17-38. [ Links ]

Curzon, H. (1924) "Cylindrical solutions of einstein's gravitation equations", Proceedings of the London Mathematical Society 23: 477-480. [ Links ]

Ernst, F. J. (1968) "New formulation of the axially symmetric gravitational field problem", Physical Review 167: 1175-1177. [ Links ]

de-Felice, F. (1990) "Potential surfaces for time-like geodesics in the Curzon metric", General Relativity and Gravitation 23(2): 136-149. [ Links ]

Gautreau, R; Anderson, J. (1967) "Directional singularities in Weyl gravitational fields", Physics Letters A 25(4): 291-292. [ Links ]

Griffiths, J; Podolský, J. (2009) Exact Space-Times in Einstein's General Relativity. Cambridge University Press, United Kingdom. [ Links ]

Halilsoy, M. (1992) "New metrics for spinning spheroids in general relativity", Journal of Mathematical Physics 33: 4225-4230. [ Links ]

Hartle, J. B; Thorne, K. S. (1968) "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars", Astrophysical Journal 153: 807-834. [ Links ]

Hearn, A. (1999) REDUCE (User's and Contributed Packages Manual). Konrad-Zuse-Zentrum für Informationstechnik, Berlin. [ Links ]

Hernández-Pastora, J; Manko, V; Martín, J. (1993) "Some asymptotically flat generalizations of the Curzon metric", Journal of Mathematical Physics34: 4760-4774. [ Links ]

Kerr, R. (1963) "Gravitational field of a spinning mass as an example of algebraically special metrics", Physical Review Letters 11: 237-238. [ Links ]

Lewis, T. (1932) "Some special solutions of the equations of axially symmetric gravitational fields", Proceedings of the Royal Society (A): 176-192. [ Links ]

Stachel, J. (1968) "Structure of the Curzon metric", Physics Letters A27(1): 60-61. [ Links ]

Synge, J. (1960) Relativity: The General Theory. North Holland Publishing, Amsterdam. [ Links ]

Wanas, M; Awadalla, N; El Hanafy, W. (2012) "Strong field of binary systems and its effects on pulsar arrival times", ArXiv:1002.3399v5 [gr-qc]. [ Links ]

1Mathematics Subject Classification: 83C05, 83C20, 83C25.

Received: February 25, 2014; Revised: March 13, 2015; Accepted: May 08, 2015

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License