Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista de Matemática Teoría y Aplicaciones
versão impressa ISSN 1409-2433
Rev. Mat vol.20 no.2 San José Jul./Dez. 2013
Lineamientos generales de solución para programación lineal con coeficientes borrosos
General guidelines solution for linear programming with fuzzy coefficients
General guidelines solution for linear programming with fuzzy coefficients
*Dirección para correspondencia:
Resumen
En este trabajo se introduce tanto a la Programación Posibilística como a la Programación Borrosa como paradigmas que permiten resolver problemas de optimización cuando los coeficientes del modelo de programación lineal o las restricciones del mismo se presentan como números borrosos, en lugar de números exactos (crisp, en inglés). Se presentan algunos ejemplos basados en [1].
Palabras clave: Programación posibilística, programación borrosa, optimización.
Abstract
This work introduce to the Possibilistic Programming and the Fuzzy Programming as paradigms that allow to resolve problems of linear programming when the coefficients of the model or the restrictions on the same are presented as fuzzy numbers, rather than exact numbers (crisp). This work presents some examples based on [1].
Keywords: Possibilistic programming, fuzzy programming, optimization.
Mathematics Subject Classification: 65J05, 90C05, 90C70, 65K05, 65K99.
Ver contenido disponible en pdf
Referencias
[1] De Andrés Sánchez J.; Terceño Gómez A.,(2002) “Programación matemática y regresión lineal con instrumentos de la teoría de los subconjuntos borrosos”, Departamento de Gestión de Empresas, Facultad de Ciencias Económicas y Empresariales. Universidad Rovira i Virgili. [ Links ]
[2] Fuller, R. (1986) “On a spetial type of fuzzy linear programming”, Colloquia Mathematica Societatis Janos Bolyai 49. [ Links ]
[3] Kaufmann, A.; Gil Aluja, J.; Terceño, A. (1994), “Matemática para la economía y la gestión de empresas”. Foro Científico, Barcelona. [ Links ]
[4] Lai, Y.J.; Hwang, C.L. (1992) “A new approach to some possibilistic linear programming problem”, Fuzzy sets and systems 49. [ Links ]
[5] Lai, Y.L.; Hwang, C.L. (1996) “Fuzzy Multiple Objective Decision Making”. Springer-Verlag, Berlin. [ Links ]
[6] Lai, Y.L; Hwang, C.L. (1992)“Fuzzy Mathematical Programming”. Springer-Verlag, Berlin. [ Links ]
[7] Ramik, J.; Rimanek, J. (1985) “Active decision making in fuzzy linear optimization problems”, European Journal of Operational Research 41. [ Links ]
[8] Rommelfanger, H.; Hanuscheck, R.; Wolf, J. (1989) “Linear programming with fuzzy objectives”, Fuzzy Sets and Systems 29. [ Links ]
[9] Tanaka, H.; Asai, K. (1984) “Fuzzy linear programming with fuzzy numbers”, Fuzzy Sets and Systems 13. [ Links ]
[10] Zimmermann, H.-J. (1991) “Fuzzy Set Theory and Its Applications”. Kluwer Academic, Dordrecht. Rev. [ Links ]
*Correspondencia a:
Sergio G. de-los-Cobos-Silva. Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, México D.F., C.P. 09340, México. E-Mail: cobos@xanum.uam.mx
Antonio Terceño-Gómez. Universitat Rovira i Virgili, Departamento de Gestión de Empresas y Economía, Avinguda de la Universitat 1, 43204, Reus, España. E-MAil: atg@fcee.urv.es
Miguel A. Gutiérrez-Andrade. Misma dirección que/Same address as: S. de-los-Cobos-Silva. E-Mail: gamma@xanum.uam.mx
*Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Ingeniería Eléctrica, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, México D.F., C.P. 09340, México. E-Mail: cobos@xanum.uam.mx
†Universitat Rovira i Virgili, Departamento de Gestión de Empresas y Economía, Avinguda de la Universitat 1, 43204, Reus, España. E-MAil: atg@fcee.urv.es
‡Misma dirección que/Same address as: S. de-los-Cobos-Silva. E-Mail: gamma@xanum.uam.mx
Received: 14/Nov/2011; Revised: 20/May/2013; Accepted: 27/May/2013