SciELO - Scientific Electronic Library Online

 
vol.72 número1Interacciones e inestabilidad del plancton en cuatro embalses tropicales con diferente estado trófico en ColombiaGenoma completo del cloroplasto de la orquídea joya, Anoectochilus formosanus (Orchidaceae) y sus afines índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Revista de Biología Tropical

versión On-line ISSN 0034-7744versión impresa ISSN 0034-7744

Rev. biol. trop vol.72 no.1 San José ene./dic. 2024

http://dx.doi.org/10.15517/rev.biol.trop..v72i1.54166 

Artículo

A new vector emerges? Aedes vittatus (Diptera: Culicidae): ecological description and current and future potential global geographic invasion

En español el título sería: ¿Un nuevo vector emerge? Aedes vittatus (Diptera: Culicidae): descripción ecológica e invasión geográfica potencial mundial actual y futura

Estefanía Mejía-Jurado1  2 
http://orcid.org/0000-0003-3105-5998

Emmanuel Echeverry-Cárdenas1 
http://orcid.org/0000-0001-9827-2626

Oscar-Alexander Aguirre-Obando1  2 
http://orcid.org/0000-0003-2480-7004

1 Escuela de Investigación en Biomatemática, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío. Carrera 15 Calle 12 Norte, Armenia, Colombia; emejiaj@uqvirtual.edu.co, eecheverryc@uqvirtual.edu.co, oscaraguirre@uniquindio.edu.co (*Correspondence)

2 Programa de Biología, Universidad del Quindío. Carrera 15 Calle 12 Norte, Armenia, Colombia.

Abstract

Introduction:

The Aedes vittatus mosquito is an important vector of yellow fever in Africa, with vectorial competence for dengue, chikungunya and Zika. Its presence has been reported in some places in Africa, Asia, Europe, and -recently- America. However, information on its distribution is fragmented, with limited descriptions of the specific characteristics of its habitats.

Objective:

To compile records of its occurrence, describe the ecological characteristics of its habitat and estimate its current and future global potential invasion.

Methods:

We employed both first-record data and global occurrence records to describe its habitat. Additionally, we used an ecological niche model, specifically the MaxEnt algorithm, with bioclimatic variable layers to estimate potential invasion areas. Since the native range of A. vittatus is unknown, we calibrated accessible areas using two hypotheses, Africa and Asia, based on available genetic information.

Results:

Regardless of its native area, A. vittatus appears to be distributed in tropical and subtropical areas in all continents with potential to reach even currently colder climates as global climate change. It is found mainly in tropical and urban areas, likely through transcontinental and terrestrial passive transport.

Conclusions:

The mosquito can be found on all continents, ranging from sea level to 2 500 m.a.s.l., at temperatures between 15 and 30 °C, and has the potential for further expansion.

Key words: Zika; Culicidae; climate change; niche modeling; tropical mosquito; vector ecology; dengue; yellow fever; chikungunya.

Resumen

Introducción:

El mosquito Aedes vittatus es un importante vector de la fiebre amarilla en África, con competencia vectorial para el dengue, la chikungunya y el Zika. Se ha informado de su presencia en algunas áreas de África, Asia, Europa y, recientemente, América. Sin embargo, la información sobre su distribución es fragmentada, con descripciones limitadas de las características específicas de sus hábitats.

Objetivo:

Recopilar registros de su presencia, describir las características ecológicas de su hábitat y estimar su potencial de invasión actual y futuro a nivel mundial.

Métodos:

Utilizamos datos de primeros registros y registros de presencia a nivel global para describir su hábitat. Además, empleamos un modelo de nicho ecológico, específicamente el algoritmo MaxEnt, con capas de variables bioclimáticas para estimar las áreas de potencial invasión. Dado que se desconoce el área nativa de A. vittatus, calibramos áreas accesibles bajo dos hipótesis, África y Asia, basadas en la información genética disponible.

Resultados:

Independientemente de su área nativa, A. vittatus parece distribuirse en regiones tropicales y subtropicales en todos los continentes, con el potencial de expandirse incluso hacia climas actualmente más fríos debido al cambio climático global. Se encuentra principalmente en áreas tropicales y urbanas, posiblemente a través del transporte pasivo transcontinental y terrestre.

Conclusiones:

El mosquito se puede encontrar en todos los continentes, desde el nivel del mar hasta altitudes de 2 500 m.s.n.m., a temperaturas que oscilan entre 15 y 30 °C, y presenta el potencial para una mayor expansión geográfica.

Palabras clave: Zika; Culicidae; cambio climático; modelado de nicho; mosquito tropical; ecología de vectores; chikungunya; dengue; fiebre amarilla.

Introduction

Aedes (Fredwardsius) vittatus (Diptera: Culicidae) (Bigot 1861) was characterized based on phenotypic features of adults (N = 86), larvae (N = 41), and pupae (N = 29). It is distinguished within the Aedes genus by several synapomorphies. These include a dark proboscis with a median scattering of pale yellowish scales, bilateral small patches of narrow white scales on the clypeus, three pairs of distinct, small, white spots of narrow scales on the anterior two-thirds of the scutum, a relatively short maxillary palpus with a white-scaled apical portion, and a white spot at the mid-point of tibia III (in anterior view) (Bigot, 1861; Huang, 1977; Pagac et al., 2021; Reinert, 2000). However, it is currently recognized that A. vittatus has a widespread distribution in the tropical regions of Africa and Asia, with some known occurrences in the Mediterranean region of Europe, including France, Italy, Portugal, and Spain, primarily due to favorable climate conditions (Díez-Fernández et al., 2018; Sudeep & Shil, 2017). Similarly, this species has recently been identified in Cuba and the Dominican Republic (tropical region of America) (Alarcón-Elbal et al., 2020; Pagac et al., 2021; Pérez-Menzies et al., 2022).

The invasion of A. vittatus, as well as other species within the same genus such as Aedes aegypti and Aedes albopictus, into new locations is often linked to passive transport facilitated by large-scale anthropogenic activities, such as transcontinental trade (Brown et al., 2011; Medlock et al., 2012; Scholte et al., 2008), as well as local vehicular transport, including both public and private land cargo (Eritja et al., 2017; Guagliardo et al., 2014). In particular, it has been proposed that tire transport could be a significant mechanism for the large-scale spread of A. vittatus (Díaz-Martínez et al., 2021). This is due to the remarkable tolerance of Aedes and other culicid eggs to desiccation, allowing them to remain viable at extreme temperatures for extended periods. This allows them to preserve their characteristics over extensive distances or throughout various times of the year until conditions become optimal for hatching and subsequent development (Diniz et al., 2017). Furthermore, their small size poses challenges in identification and, consequently, in vector control.

Overall, this mosquito is hematophagous, with females feeding on the blood of goats, cattle, humans, and sheep (Chepkorir et al., 2018). It exhibits ecological plasticity by breeding in various habitats, including rock pools, artificial containers, tree holes, puddles, and fresh fruit peels. It is found in forests, savannas, and arid lands, displaying both sylvatic and peri-domestic behavior (Ali et al., 2014; Diallo et al., 2012a; Obi et al., 2022; Suganthi et al., 2014). The presence and distribution of this mosquito in these microhabitats are primarily influenced by climate factors. Below 10 °C, conditions are unfavorable for its biological development; between 11 and 14 °C, only a few individuals can survive, and egg and larva mortality increases. However, between 24 and 27 °C, with humidity levels above 75 %, 75 % to 89 % of the eggs hatch. Remarkably, it exhibits thermophilic characteristics, as evidenced by preimaginal development occurring between 36 and 45 °C, and it displays good tolerance to desiccation (McClelland & Green, 1970; Roberts, 2004; Service, 1970).

Additionally, A. vittatus plays a crucial role in transmitting yellow fever in rural areas of tropical Africa (Bueno-Marí & Jiménez-Peydró, 2010). It also possesses vector competence for dengue (Angel & Joshi, 2008), chikungunya (Diallo et al., 1999) and Zika (Diallo et al., 2014). Similarly, A. vittatus has the vectorial capacity to transmit arboviruses like Japanese encephalitis, West Nile virus, Chandipura, and Chittoor (Sudeep et al., 2020). The diseases transmitted by species of the Aedes genus, including those mentioned earlier, have raised significant concerns in global public health due to the lack of effective vaccines for most arboviruses, with a few exceptions that have shown limited effectiveness, such as the dengue vaccine (Carvalho & Long, 2021; Girard et al., 2020).

Traditional mosquito vector control methods include the use of chemical products, primarily insecticides, and biological products (Baldacchino et al., 2015; Wilson et al., 2020). Biological methods now encompass releasing mosquito populations infected with Wolbachia sp. to render natural populations refractory to the arboviruses they transmit (Caputo et al., 2019; O’Neill, 2018), or using transgenic mosquitoes to suppress populations and interrupt the vector transmission cycles (Bellini et al., 2013; Carvalho et al., 2015). Nevertheless, these efforts primarily target A. aegypti and A. albopictus, which are global vectors responsible for the transmission of diseases such as dengue, Zika, and chikungunya (Weeratunga et al., 2017). In the Americas, these diseases are primarily transmitted by A. aegypti (Kotsakiozi et al., 2017) and occasionally by A. albopictus, which has evidenced possible vertical transmission of Zika, yellow fever, and dengue by this mosquito (Alencar et al., 2021; Martins et al., 2012; Rúa-Uribe et al., 2012). If populations of A. aegypti or A. albopictus were controlled, A. vittatus could become a significant vector for these diseases.

Currently, research on A. vittatus primarily centers on its vector competence for specific arboviruses in Africa (Diallo et al., 2014; Mulwa et al., 2018) and Asia (Angel & Joshi, 2008; Sudeep et al., 2020). There is limited and outdated research on its biology and ecology, primarily conducted in the same regions (Roberts, 2001; Roberts, 2004; Service, 1970). Furthermore, there are reports of its presence in Europe (Bueno-Marí & Jiménez-Peydró, 2010; Eritja et al., 2018), and it has recently become established in the Americas. Additionally, population genetic analysis is being conducted to understand the origin of the A. vittatus invasion in the Caribbean (Alarcón-Elbal et al., 2020; Pagac et al., 2021). Hence, it is crucial to track potential new sites of invasion by this species, as it could complicate the epidemiological landscape in public health.

Ecological niche modeling (ENM) serves as a prediction tool for identifying areas globally with suitable environmental conditions for A. vittatus. This tool uses species presence records and layers of bioclimatic variables, employing a mathematical algorithm to identify geographic areas where the species could potentially invade. This, in turn, helps identify potential locations for arbovirus transmission (Carvalho et al., 2017; Peterson et al., 2011). For instance, this method has been employed to predict the potential distribution areas of significant mosquitoes in public health, both globally, such A. aegypti and A. albopictus (Kamal et al., 2018) and locally, including Culex pipiens pallens (a primary vector of lymphatic filariasis and Japanese encephalitis) and Culex pipiens quinquefasciatus (a primary vector of West Nile fever and lymphatic filariasis) (Chandel et al., 2013; Cui et al., 2013; Liu et al., 2020).

Disease-vector mosquitoes are influenced by climatic variables such as temperature and humidity, as they exhibit positive responses to environmental conditions. For instance, A. aegypti and A. albopictus thrive in temperatures between 20 and 32 °C. Conversely, they exhibit negative responses to temperatures exceeding 39 °C or falling below 16 °C, which extends their life cycle (Ezeakacha & Yee, 2019; Marinho et al., 2016). These factors significantly affect their survival, bite rates, and distribution, consequently impacting the transmission of diseases, either positively or negatively (da Cruz-Ferreira et al., 2017).

One approach to predict the impact of climate change on mosquito distribution is to use prediction models, such as the Shared Socioeconomic Pathways (SSP), which estimate future concentrations of greenhouse gases, including CO2. These include SSP245, SSP370, and SSP585, which can help identify potential future invasion areas by considering the impact of climate change under these scenarios (O’Neill et al., 2017; Riahi et al., 2017).

A. vittatus, along with other vectors, has been the subject of niche modeling studies for chikungunya virus vectors in southeast Senegal’s Kedougou region (Richman et al., 2018), potential distribution of Aedes genus species in Nigeria (Omar et al., 2021), and arbovirus vectors in Morocco (Abdelkrim et al., 2021). Recently, a global study, which included three mosquito species, including A. vittatus, estimated their potential global distribution under current and future climate conditions (Abdelkrim et al., 2022). However, the study did not account for the vector’s ecological characteristics in currently registered zones. Additionally, unlike other mosquito species (Echeverry-Cárdenas et al., 2021; Kamal et al., 2018), the present study did not use the native area for calibration model. Since the native origin of A. vittatus remains unknown, calibration of the accessible area relied on available genetic information. Furthermore, estimations were conducted using new models and climate change scenarios (CMIP6) (Eyring et al., 2016).

Hence, understanding the characteristics of its habitats and identifying potential invasion areas, both current and future in the context of climate change, is essential. This knowledge will help assess its potential global epidemiological impact and enable the inclusion of this vector in surveillance and control strategies for local transmission scenarios. Therefore, our objective was to describe the ecology of the new vector, A. vittatus (Diptera: Culicidae), based on occurrence records and estimate its global invasion potential under two hypothetical origins, Asia, and Africa, for both the present and the future.

Materials and methods

Study area: This global study identified A. vittatus in tropical Africa, tropical Asia, the western Mediterranean region of Europe, and recently, in some Caribbean islands (Alarcón-Elbal et al., 2020; Bueno-Marí & Jiménez-Peydró, 2010; Díaz-Martínez et al., 2021; Pérez-Menzies et al., 2022; Sudeep & Shil, 2017).

Bibliographic review: We conducted a systematic search for scientific articles reporting the first records of A. vittatus at the country level. We used the following databases to identify its geographical presence: Scopus (https://www.scopus.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), Springer link (https://link.springer.com/), Science direct (https://www.sciencedirect.com/), Google Scholar (https://scholar.google.es/) and Google (www.google.com). Google was employed to gather non-scientific information, such as news, notes, and reports. In each of the databases, keywords were used, like “Aedes vittatus”, followed by the Boolean operator “AND” and “first registry” and the Boolean operator “OR” and “registries”. To broaden the dataset of vector occurrences, we used the keyword “Aedes vittatus” for the general search of vector registries. We reviewed titles and abstracts from the search results and selected only those that met the criteria, such as the first registry in a country or the presence of the vector in a specific site. The search in each database covered all dates in English, Spanish, and Portuguese.

Registries of presence of Aedes vittatus: We created a dataset from the results of the previous section and data obtained from the Global Biodiversity Information Facility (GBIF, 2021; https://www.gbif.org/). This dataset was used to create a table containing all the first registries and records reported in scientific articles for A. vittatus in each country. The table includes relevant information such as the continent, year of the registry, and reference. In addition, georeferencing of this dataset served as the foundation for estimating the global geographic distribution and potential invasion of A. vittatus (further details in the ‘Estimation of the Geographic Distribution’ section). Data lacking georeferencing information were excluded from this study.

Additionally, this dataset was cleaned to remove duplicate entries and address geospatial issues (Kamal et al., 2018; Kraemer et al., 2015). To achieve this, we used the R Studio environment (R CoreTeam 2017) along with the sp 1.4-1 (Pebesma et al., 2020), raster 3.4-5 (Hijmans et al., 2020a), and dismo 1.3-3 (Hijmans et al., 2020b) packages. Due to the absence of data regarding the native area of A. vittatus, we relied on existing genetic evidence from the COI gene. This evidence, as presented in the haplotype network suggested by Pagac et al. (2021), primarily links most of the analyzed populations to Africa (6 haplotypes) and Asia (21 haplotypes). Haplotype networks help propose the geographic origin or ancestral lineage of species using molecular markers (Leigh & Bryant, 2015). Two scenarios were evaluated, one assuming the native area of A. vittatus is in Africa, and the other in Asia. Under the African origin hypothesis, the occurrence dataset was divided into two subgroups: A, which included occurrences from Africa used for calibration, and B, containing occurrences from the rest of the world for validation. Similarly, under the Asian origin hypothesis, subgroups C and D were formed, with C including Asian occurrences used for calibration, and D containing occurrences from the rest of the world for validation.

Ecological niche modeling and estimation of the accessible area: To predict the potential invasion of A. vittatus under current and future conditions, we employed the maximum entropy algorithm implemented in MaxEnt v3.4.3 software (Phillips et al., 2021). This allows us to assess the influence of environmental variables in the estimations and calibrate models using datasets of various sizes. Additionally, it is suitable for predictions at both temporal and spatial scales (Peterson et al., 2011; Phillips et al., 2006). To calibrate the ENM, we defined the accessible area (M) of the species, including its occurrence records in both continents, Africa, and Asia, following the approach outlined by Barve et al. (2011). This involved implementing a convex minimal polygon that covered a significant portion of the species’ distribution area, as per Rochlin et al. (2013). Similarly, 10 000 random background points were placed within each accessible area for model calibration (Peterson et al., 2011). For each continent, we employed two modeling methods: spatial modeling, projecting ideal current environmental conditions for A. vittatus invasion worldwide, and spatial-temporal modeling, suggesting potential vector invasion on a global scale considering the effects of climate change.

Climate data and ecological characterization: To estimate the current geographic distribution, we used bioclimatic data from WorldClim v2.1 (https://www.worldclim.org/), encompassing 19 bioclimatic variables collected from global weather stations (Fick & Hijmans, 2017). The data had a spatial resolution of 2.5 min, approximately 5 km² (Kamal et al., 2018; Kraemer et al., 2015; Medley, 2010). These variables underwent a Variance Inflation Factor (VIF) analysis in R Studio using the raster 3.4-5 (Hijmans et al., 2020a), rgdal 1.5-23 (Bivand et al., 2021), and usdm 1.1-18 (Naimi, 2017) packages to reduce multicollinearity (Pradhan, 2016). The resulting variable layers were then used to estimate the species potential invasion under current and future conditions.

To estimate the future invasion of A. vittatus in the context of climate change, we used the selected variables from WorldClim v2.1 under the SSP245, SSP370, and SSP585 scenarios for the periods 2041-2060 and 2081-2100. This was performed using Global Circulation Models (GCMs), as they offer a flexible and robust framework to evaluate the statistical significance and importance of variables, providing a straightforward and solid interpretation of the model (Flato et al., 2013; Guisan et al., 2002; Marengo et al., 2014). We used the following models: GISS‒E2‒1‒H, MIROC‒ES2L, MPI‒ESM1‒2‒HR, MRI‒ESM2‒0 (Hausfather et al., 2022), IPSL‒CM6A‒LR, and UKESM1‒0‒LL (Flynn & Mauritsen, 2020). These models were selected based on their values of ECS (2.5-4 °C) and TCR (1.4-2.2 °C) to represent different climate sensitivities. All selected variable layers were adjusted to match the defined accessible area (M) and were used to construct invasion scenarios for the specified climate change periods.

To characterize the habitats where A. vittatus is currently found, we extracted temperature (mean, standard deviation, minimum, and maximum) and precipitation (mean, standard deviation, minimum, and maximum) data from the WorldClim v2.1 dataset (https://www.worldclim.org/). These variables are crucial for understanding the mosquito vectors’ life cycle (Echeverry-Cárdenas et al., 2021; Leyton et al., 2020; Valencia-Marín et al., 2020). We obtained and extracted elevation data from WorldClim v2.1 (https://www.worldclim.org/) and land coverage data from Diva-gis (https://www.diva-gis.org/). We determined the type of urbanization through visual exploration of occurrences using QGIS v3.16 with the available Google Hybrid layer. Urban occurrences were classified as those located within urban areas, while those in urbanization perimeters or immediate vicinity were considered peri-urban areas. Occurrences without human establishments nearby were categorized as rural areas. Additionally, we obtained sea route data (Benden, 2022) and overlaid it on the current invasion potential to assess the potential influence of transcontinental freight transportation routes on the species’ spread.

Estimation of the geographic distribution: To estimate the potential geographic distribution of A. vittatus, we considered four contexts that accounted for latitudinal and longitudinal variations. For model calibration, we used subgroups A and C with environmental variable layers under current conditions confined to accessible areas. Subsequently, we estimated the potential effects of climate change in areas of potential A. vittatus invasion for the periods 2041-2060 and 2081-2100 under the SSP245, SSP370, and SSP585 emission pathways for each respective period.

We conducted all estimations using the maximum entropy algorithm in MaxEnt software v.3.4.3 (Phillips et al., 2021). Each estimation consisted of ten replicates with 1 000 iterations, using the logistic output format. Parameters ‘Do Clamping’ and ‘Extrapolation’ were deactivated for current and future estimations to prevent ecological variable extrapolations (non-analogous climates) (Echeverry-Cárdenas et al., 2021; Kamal et al., 2018). To represent each emission scenario under future conditions, we calculated the mean between the predictions generated by each selected GCM, resulting in a final map (Abdelkrim et al., 2022). We reclassified all resulting maps into a binary format, distinguishing potential invasion areas based on a threshold corresponding to the lowest environmental suitability value associated with known presence records. We considered an omission value (E) of 0.05 (Jiménez-García & Peterson, 2019; Liu et al., 2005; Marques et al., 2020). The potential extension area was quantified in all scenarios.

Validation of the model: We validated the models only under current conditions, as the behavior of A. vittatus under future climate change scenarios is unknown. We used the ntbox packages (Osorio-Olvera et al., 2020) in R Studio to estimate the area under the curve (AUC), with metric values between 0.7 to 0.9 indicating good models and values > 0.9 considered excellent (Peterson et al., 2011). To further assess model performance, we determined the significance level of the AUC using partial analysis of Receiver Operating Characteristics (ROC-partial). This analysis utilized the B and D subsets of A. vittatus presence records (Lobo et al., 2008). This analysis aimed to address AUC deficiencies (Peterson et al., 2008) by adjusting the parameter to 0.05 per 1 000 iterations. To evaluate the model’s significance, we considered AUC values with P < 0.05, indicating that the predictions were statistically superior to those from a random model (Echeverry-Cárdenas et al., 2021; Peterson et al., 2008).

Results

The systematic search resulted in over 1 300 results, with 63 meeting the search criteria. Among these, seven articles reported the first registries of A. vittatus, while the remaining 110 registries were from various locations in Africa, Asia, Europe, and America (Table 1; Fig. 1A). The search on the GBIF platform initially retrieved 395 occurrences, which were reduced to 94 after purging. Therefore, the final dataset from the systematic search and GBIF platform comprises 212 occurrences (Fig. 1A).

Table 1 Records of A. vittatus worldwide were obtained from a bibliographic review. The data are presented chronologically, from oldest to most recent. 

Continent Country Year Reference
Europe France 1861 (Bigot, 1861)*
Africa Morocco 1916 (Gaud, 1947)*
Europe Spain 1925 (Gil-Collado, 1930)*
Europe Spain 1927 (Gil-Collado, 1930)
Europe Spain 1929 (Gil-Collado, 1930)
Asia Bangladesh 1949 (Nasir-ud-din, 1952)
Africa Tunisia 1952 (Vermeil, 1953)*
Europe France 1952 (Hamon & Remmert, 1952)
Europe Italy 1960 (Coluzzi, 1961)*
Europe France 1960 (Callot, 1962)
Asia Pakistan 1960 (Qutubuddin, 1960)
Africa Zimbabwe 1967 (Freyvogel & McClelland, 1969)
Africa Senegal 1972 (Diallo et al., 1999)
Africa Uganda N.A (Mukwaya, 1974)
Africa Nigeria 1973 (Service, 1974)
Africa Nigeria N.A (Stafford, 1981)
Africa Nigeria 1981 (Irving-Bell et al., 1987)
Asia Pakistan 1993 (Suleman & Khan, 1993)
Asia India 1997 (Patel, 2016)
Asia India 1998 (Rajavel et al., 2005)
Asia Oman 2000 (Roberts, 2004)
Asia Saudi Arabia 2000 (Miller et al., 2002)
Asia Pakistan 2000 (Ilahi & Suleman, 2013)
Asia India 2006 (Angel & Joshi, 2008)
Africa Central African Republic 2006 (Ngoagouni et al., 2012)
Europe Spain 2007 (Bueno-Marí, 2010)
Asia India 2008 (Kumari et al., 2011)
Africa Senegal 2009 (Diagne et al., 2014)
Asia Saudi Arabia 2009 (Al Ashry et al., 2014)
Africa Nigeria 2010 (Idowu et al., 2012)
Asia Saudi Arabia 2010 (Alikhan et al., 2014)
Africa Senegal 2011 (Diallo et al., 2014)
Africa Nigeria 2011 (Adeleke et al., 2013)
Asia Iran 2011 (Nasirian et al., 2014)
Africa Ghana 2012 (Suzuki et al., 2016)
Africa Ghana 2012 (Esena et al., 2013)
Asia Pakistan 2013 (Ali et al., 2013)
Africa Ivory Coast 2013 (Zahouli et al., 2017b)
Africa Ivory Coast 2014 (Zahouli et al., 2017a)
Asia Pakistan 2014 (Khan et al., 2015)
Africa South Africa 2014 (Guarido et al., 2021)
Africa South Africa 2014 (Johnson et al., 2020)
Europe Spain 2015 (Díez-Fernández et al., 2018)
Africa Kenya 2015 (Chepkorir et al., 2018)
Africa Ghana 2015 (Captain-Esoah et al., 2020)
Europe Spain 2017 (Eritja et al., 2018)
Africa Kenya 2017 (Mulwa et al., 2018)
Africa Nigeria 2017 (Afolabi et al., 2019)
Asia United Arab Emirates 2017 (Roberts, 2020)
Asia Sri Lanka 2017 (Chandrasiri et al., 2019)
Africa Ethiopia 2017 (Ferede et al., 2018)
Africa South Africa 2017 (Omar et al., 2021)
Africa Benin 2017 (Anges et al., 2018)
Africa Sudan 2017 (Eshag et al., 2019)
Africa Tunisia 2017 (Ben Ayed et al., 2019)
Asia India 2018 (Singh et al., 2019)
Asia India 2018 (Sudeep et al., 2020)
Africa Ghana 2018 (Joannides et al., 2021)
Asia Sri Lanka 2018 (Surendran et al., 2021)
America Dominican Republic 2019 (Alarcón-Elbal et al., 2020)*
America Cuba 2019 (Pagac et al., 2021)*
America Cuba 2020 (Díaz-Martínez et al., 2021)
Asia India 2020 (Reegan et al., 2020)

* First registries; N.A Year not available.

Fig. 1 World map showing records of A. vittatus occurrence. A. Zones where it is found based on the occurrences. B. In both maps the isoclines are presented. The isoclines show the tropical and subtropical regions. 

Table 2 lists the selected variables for calibrating the ENM, all of which are important in the biological cycle of A. vittatus. The supplementary material (SMT1) contains the ecological characterization data, which indicates that A. vittatus is mainly found in urban zones (42.4 %), followed by rural (39.6 %) and peri-urban (17.9 %) zones (Fig. 1B). In these zones, the mosquito is found in various habitats, including tropical forests (37.2 %), tropical grasslands (30.1 %), deserts (16.0 %), Mediterranean forests (9.4 %), lakes (2.8 %), high-altitude grasslands (1.8 %), temperate forests (0.9 %), mangroves (0.9 %), and temperate grasslands (0.5 %). Based on global registries collected and with a 30-year data history for temperature and precipitation variables, on average A. vittatus in Africa is found at temperatures of 25.4 °C ± 2.4 (min 9.7-33.3 max), precipitations up to 100.9 mm ± 85.1 (min 0.0-466.0 max), and altitudes of 451.9 m ± 359.9 (min 4-1 656 max). In Asia, the mosquito is found at temperatures averaging 25.9 °C ± 3.0 (min 6.5-35.9 max), with precipitation levels averaging 67.6 mm ± 57.4 (min 0-1 594 max), and altitudes around 415.6 m ± 521.4 (min 2-2 403 max). In Europe, the conditions are characterized by temperatures averaging 15.4 °C ± 5.6 (min 1.4-27 max), precipitation averaging 74.6 mm ± 58.1 (min 2-324 max), and altitudes around 357.9 m ± 376.1 (min 19-1 497 max). In the Americas, A. vittatus typically experiences temperatures averaging 24.7 °C ± 1.6 (min 20.2-27.5 max), precipitation averaging 42.3 mm ± 15.4 (min 25-222 max), and altitudes around 263.3 m ± 317.9 (min 64-630 max). Furthermore, a Kruskal-Wallis analysis determined that between altitude and zone type no statistically significant differences exist (chi-squared= 2.2375, df= 2, P = 0.3267). In turn, in any of the three zones, A. vittatus has been recorded principally between 100 and 500 m approximately, nevertheless, it has been registered in altitudes up to 1 600 m in urban zones and > 2 000 m in peri-urban and rural zones (Fig. 2).

Table 2 Climatic variables selected for the ENM of A. vittatus in the world 

Variable Unit
Rainfall seasonality %
Isothermality %
Annual precipitation mm
Precipitation of the wettest month mm
Precipitation of the driest quarter mm
Mean annual temperature °C
Mean diurnal range °C

Fig. 2 Box diagram showing the results of the Kruskal-Wallis test for the global registries of A. vittatus with respect to altitude and type of zone. 

The estimations under the current context, for both hypotheses of native areas, Africa (AUC= 0.90 and ROC partial P = 0.00) and Asia (AUC= 0.83 and ROC partial P = 0.00), suggest that both models are suitable for making predictions. The invasion scenarios obtained in both estimations indicate that A. vittatus would primarily inhabit tropical regions rather than subtropical ones. These models predict its potential presence in Oceania, North America, and South America, where its presence has not been reported to date. In these estimations, A. vittatus could be found at altitudes of up to 2 900 m in Africa and Europe and 3 900 m in Asia. Conversely, for the African hypothesis, it is estimated that it could inhabit areas up to 3 900 m in America and 900 m in Oceania, while for the Asian hypothesis, it could be found up to 4 900 m in America and 749 m in Oceania.

In the African hypothesis, which assumes Africa as the native area, the proposed invasion encompasses a smaller area (in square kilometers) and fewer sites compared to the Asian hypothesis, where Asia is considered the native area (Table 3). In the African continent, A. vittatus could be found in 96 % of its total extent, spanning across 52 countries, with a more scattered distribution in the northern and southern regions of the continent. In contrast, the Asian hypothesis suggests a distribution that covers regions in every country on the African continent. In the Asian continent, the African hypothesis covers 39 % of the continent (31 countries), while the Asian hypothesis covers 52 % (27 countries) with a greater distribution towards the western regions. It is noteworthy that both hypotheses for the Asian invasion exhibit similarities and include regions such as the Philippine islands, Indonesia, Japan, Malaysia, and Taiwan. In the European continent, the African hypothesis encompasses suitable areas in 91 % of the continent (45 countries). In contrast, the Asian hypothesis concentrates its distribution primarily in the Mediterranean region and eastern Europe, covering approximately 86 % of the continent. Additionally, suitable areas were identified in Iceland, which is not the case in the African hypothesis. In Oceania, according to both hypotheses, the mosquito could be found in much of Australia, with a lesser presence in New Caledonia, New Zealand, and Papua New Guinea. Furthermore, in the American continent, according to both hypotheses, the distribution extends to all countries except Surinam under the Asian hypothesis. In this same hypothesis, the presence of the mosquito could also be noted along the coastline of Alaska (the United States) (Fig. 3).

Table 3 Expansion of current and future potential global invasion areas for A. vittatus. 

Hypothesis Period Scenario Native area (km2) Invasion area (km2) Absence area (km2)
Africa Current 18 693 336.5 13 082 744.5 108 343 919.0
2041-2060 SSP245 17 679 724.5 14 006 475.7 108 433 799.8
SSP370 18 019 071.4 14 279 094.5 107 821 834.2
SSP585 18 538 825.1 14 667 354.9 106 913 820.0
2081-2100 SSP245 18 538 230.5 15 239 057.0 106 342 712.5
SSP370 25 046 653.9 26 009 563.2 89 063 782.9
SSP585 23 682 315.9 26 163 646.0 90 274 038.2
Asia Current 7 123 754.9 23 307 443.3 109 688 801.8
2041-2060 SSP245 13 010 899.4 28 791 713.6 98 317 387.0
SSP370 12 609 887.7 28 476 616.3 99 033 496.0
SSP585 14 260 564.9 29 400 383.6 96 459 051.5
2081-2100 SSP245 18 498 701.5 29 065 207.7 92 556 090.9
SSP370 17 591 115.3 29 199 422.3 93 329 462.4
SSP585 17 555 140.0 28 984 905.5 93 579 954.5

Fig. 3 Model of global potential invasion by A. vittatus under current conditions, assuming A. Africa, and B. Asia as its native regions. In both maps the principal seaports and their principal maritime trade routes are represented. 

Overall, in the future context for both hypotheses, the invasion of A. vittatus reaches very similar zones. The invasion consistently tends to increase in tropical zones regardless of the scenario and period, and this trend becomes even more pronounced in subtropical zones with high emission scenarios (SSP370 and SSP585). For the Asian hypothesis, it is estimated that A. vittatus can potentially invade colder zones, which is not the case in the African hypothesis. In both hypotheses, for the 2041-2060 period and across all three scenarios, the mosquito could be found at altitudes of up to 3 900 m in Asia, Africa, and America. Nevertheless, in the Asian hypothesis, it could reach altitudes exceeding 4 000 m in America within all three emission scenarios. In Europe, for both hypotheses, the mosquito could reach altitudes up to 2 900 m. In addition, in Oceania, the maximum altitude is between 500 and 749 m. For the 2081-2100 period, under the African hypothesis, A. vittatus could invade altitudes > 4 000 m in America in scenarios SSP370 and SSP585. Likewise, A. vittatus can reach altitudes > 5 000 m in Asia (China) under the three scenarios in the Asian hypothesis, while for the African hypothesis, this occurs only in high scenarios (SSP585). Furthermore, within the invasion zone encompassing Greenland and Antarctica, the mosquito could be found at altitudes reaching up to 1 900 m.

In future estimations, under a context of climate change, in the African hypothesis for the first period (2041-2060), the potential invasion of A. vittatus in the three scenarios (SSP245, 370 and 585) was quite similar to the current conditions. In SSP245 scenario, the invasion area expanded compared to the invasion under current conditions (Table 3). This is evident in countries across the Americas, including Brazil, Guyana, Suriname, French Guiana, Honduras, El Salvador, Guatemala, Belize, Puerto Rico, the Dominican Republic, the United States, and Canada. However, the potential invasion area decreased in Argentina, Colombia, Ecuador, Panama, and Mexico. Meanwhile, in Asia, it expanded in China and South Korea but contracted in Saudi Arabia, Oman, Yemen, India, Turkey, Iran, Kazakhstan, southwestern Russia, Burma, Iraq, and North Korea. In the European continent, the potential invasion area expanded in Norway, Sweden, Poland, Ukraine, Romania, Hungary, Slovakia, Lithuania, and the Czech Republic but decreased in Spain. Furthermore, in Africa, it increased in certain areas of Tanzania and Kenya but diminished in Morocco, Algeria, Mauritania, Mali, Niger, Chad, Sudan, Ethiopia, Somalia, Eritrea, the Democratic Republic of Congo, and Madagascar. In Oceania, the potential invasion area decreased in Australia and New Zealand (Fig. 4A).

Fig. 4 A.-C. Global potential invasion model for Africa and, D.-F. Asia, during the 2041-2060 period under three climate change scenarios (SSP245, SSP370, and SSP585). 

In SSP370 scenario, both the invasion area and the native distribution area expanded (Table 3). The trends are observed in various countries across different continents. In the Americas, countries such as Colombia, Brazil, Venezuela, Guyana, Suriname, Peru, Bolivia, Argentina, Panama, Nicaragua, Guatemala, Belize, the Dominican Republic, Puerto Rico, Mexico, the United States, and Canada have seen these changes. In Asia, we have witnessed increases in Laos, Vietnam, Kazakhstan, Turkmenistan, Turkey, Saudi Arabia, Pakistan, Tajikistan, and Yemen, with decreases noted in Oman and China. In Europe, expansion has been observed in Sweden, Poland, Belarus, Ukraine, Romania, and Spain. In Africa, the invasion has intensified in Algeria, Morocco, Libya, Egypt, Nigeria, Tanzania, Kenya, Uganda, Botswana, Congo, Zimbabwe, and South Africa, while variation is evident in Senegal, Mali, Niger, Chad, and Sudan. Finally, Oceania has seen an increase in Australia (Fig. 4B). In scenario SSP585, the invasion increases (Table 3) for the sites mentioned, including India (Asia), diminishing in Senegal, Mali, Niger, Chad, and Sudan (Africa) (Fig. 4C).

For the second period (2081-2100) in scenario SSP245, the potential invasion remained similar to that of the first period, with a broader extension observed in the Americas, including Brazil, Guyana, Suriname, French Guiana, Peru, Colombia, Venezuela, Argentina, Bolivia, Panama, Nicaragua, Honduras, Guatemala, Belize, El Salvador, Mexico, Puerto Rico, the Dominican Republic, the United States, and Canada. In Asia, the invasion expands in China, India, Pakistan, Tajikistan, Kazakhstan, Afghanistan, Turkmenistan, Turkey, Iraq, Iran, Saudi Arabia, southwestern Russia, and South Korea, while decreasing in Oman and Yemen. In Africa, the potential distribution varies across the continent, particularly in Algeria, Morocco, Libya, Egypt, Eritrea, Senegal, Mali, Niger, Chad, Sudan, Angola, and the Democratic Republic of Congo. In Oceania, the invasion increases in Australia (Fig. 5A).

Fig. 5 A.-C. Global potential invasion model for Africa and, D.-F. Asia during the 2081-2100 period under three climate change scenarios (SSP245, SSP370, and SSP585). 

In scenarios SSP370 and SSP585, the invasion of A. vittatus in the continents is broader (Table 3), given that for the first scenario, it reaches almost the entire American continent, except for Canada and some sites in the United States and around Colombia, Venezuela, Brazil, Ecuador, and Peru. Similarly, the invasion extends to nearly the entire African continent, with estimates suggesting an invasion into parts of the Sahara. In Europe, the distribution remains unchanged compared to scenario SSP245. However, in Asia, the invasion extends into the central part of the continent and intensifies around Iran, Saudi Arabia, and in islands such as Malaysia and Indonesia. In Oceania, the invasion increases in some zones of Australia, New Zealand, and Papua New Guinea (Fig. 5B). In scenario SSP585, the invasion remains unchanged compared to scenario SSP370; nevertheless, a decrease is projected in certain areas of South America, southern Asia, and Australia (Fig. 5C).

In the Asian hypothesis for the initial period (2041-2060), the potential invasion of A. vittatus in scenario SSP245 increases in the southern part of Asia, particularly around Saudi Arabia and Iran, as well as in North and South America. However, there are variations in certain areas of Africa, such as the Democratic Republic of Congo and countries surrounding the Sahara (Morocco, Mauritania, Senegal, Mali, Niger, Chad, and Sudan). In turn, in Europe, the invasion increases in Spain, Sweden, the United Kingdom, Italy, France, Rumania, Ukraine, Germany, and Austria (Fig. 4D). In scenarios SSP370 and SSP585, the distribution remains quite similar to scenario SSP245 except for some zones where the invasion diminishes for scenario SSP370, as in America (Argentina, Mexico, the United States, and Canada), Asia (Saudi Arabia, China, and Afghanistan), Europe (Germany, Poland, Belarus, Ukraine, Sweden, and Finland), and Africa (Mauritania, Mali and Sudan) (Fig. 4E). In scenario SSP585, the invasion increases for all continents, varying in Africa in Mauritania, Mali, Niger, Chad, and Sudan (Table 3) (Fig. 4F).

For the second period (2081-2100) across all three emission scenarios, an invasion is projected in southern Greenland and an area of the Antarctic, extending through South America (Fig. 5D, Fig. 5E, Fig. 5F). In scenarios SSP245 and SSP370, the invasion expands in North America, encompassing larger areas in Canada and the United States, and in South America, affecting certain regions of Brazil, Colombia, Venezuela, Peru, Ecuador, and Argentina. Similarly, an increase is projected in the Asian continent in China, Mongolia, and southeastern Russia. However, for scenario SSP370, a decrease is expected in certain areas of Africa, particularly around the Sahara (Burkina Faso, Mauritania, Niger, Nigeria, Somalia, Eritrea, Senegal, Mali, Niger, Chad, Sudan, South Sudan) (Fig. 5D, Fig. 5E). For scenario SSP585, a decrease is estimated in the invasion in South America, Africa, and Australia, with an increase in some zones of the United States, like Alaska (Fig. 5F).

Discussion

The A. vittatus mosquito is found in tropical and subtropical regions on all continents, except Oceania. It is distributed across urban areas (42.4 %), rural areas (39.6 %), and peri-urban zones (17.9 %), with altitudes ranging from 2 to 2 403 m. No global studies exist for A. vittatus focusing on its latitudinal and altitudinal distribution. Existing studies are based on faunal surveys that indirectly address A. vittatus in rural, peri-urban, and urban zones in Africa (Captain-Esoah et al., 2020; Diallo et al., 2012a; Diallo et al., 2012b) and Asia (Alikhan et al., 2014; Angel & Joshi, 2008; Nasirian et al., 2014). Furthermore, our current estimations indicate the invasion of large areas in countries across every continent. Consequently, A. vittatus can currently be found in rural, peri-urban, and urban zones. Various studies on other invasive mosquito species and disease vectors suggest that the spread and colonization of new areas are associated with factors such as urbanization, climate, reproductive needs, and habitat preferences (Day, 2016; Rose et al., 2020; Wilke et al., 2019).

Global results indicate that A. vittatus is typically found in areas with temperatures averaging between 24 and 26°C and precipitation ranging from 42 to 101 mm. Species of medical and veterinary importance, such as A. aegypti and A. albopictus, which have a tropical and subtropical distribution, exhibit optimal development temperatures between 20 and 32 °C (Reinhold et al., 2018), while species of the genus Culex thrive at optimal temperatures between 24 and 30 °C (Ciota et al., 2014). Regarding A. vittatus, a study assessing the potential distribution of arbovirus vectors in Morocco suggests that it may be found in regions with a mean annual temperature ranging from 20 to 30 °C (Abdelkrim et al., 2021). However, the mean temperature for Europe was found to be 15.4 °C. Nevertheless, our simulations under current conditions estimate suitable areas on this continent. Reproductive success in colder zones may be attributed to the diapause capacity observed in eggs and larvae of species from genera such as Aedes, Anopheles, Ochlerotatus, Orthopodomyia, among others (Denlinger & Armbruster, 2014; Diniz et al., 2017), as well as population growth during the summer or until conditions become optimal for development (Fonseca et al., 2015).

Based on occurrence records, A. vittatus is primarily found in tropical forests and tropical grasslands, followed by dry (desert) and temperate habitats (Mediterranean forests, temperate forests, and temperate grasslands). At present, there are no studies that provide a detailed description or specification of the habitats where A. vittatus is globally distributed. However, studies in Africa for A. vittatus and other mosquito species have documented their abundance in arid lands, savannas, forests, agricultural soils, and villages in which it has been dominant in microhabitats, like puddles, fruits, rock pools and tree holes. In the absence of natural breeding sites, the vector can reproduce in artificial containers such as plastic bottles, cups, used cans, broken clay pots, and so on (Ali et al., 2014; Diallo et al., 2012a; Obi et al., 2022).

Models obtained under current conditions estimate that A. vittatus is primarily distributed in the tropical region (up to 3 900 m for the African hypothesis and 4 900 m for the Asian hypothesis) and in some subtropical zones (up to 2 900 m for the African hypothesis and 3 900 m for the Asian hypothesis). Currently, it is suggested that A. vittatus is mostly distributed in the tropical region with suitable areas of lower probability in subtropical regions (Abdelkrim et al., 2022). Invasive species at a global scale, such as A. aegypti (African) and A. albopictus (Asian) have distributions in both regions. Specifically, A. aegypti exhibits a wider invasion in tropical regions compared to subtropical regions. In contrast, A. albopictus has a broad invasion in both tropical and subtropical regions, and it is estimated to have established in areas including Europe, Iceland, Greenland, the United States, and Japan (Kamal et al., 2018; Kraemer et al., 2015). According to our estimations, A. vittatus could potentially exhibit a pattern similar to A. albopictus. Regardless of its native area, this mosquito has the potential to invade tropical and subtropical zones with altitudes exceeding 2 000 m. Furthermore, under future conditions, it is estimated that the invasion of both A. aegypti and A. albopictus will increase. In contrast, for A. vittatus, its range of invasion is expected to decrease in high emission scenarios (RCP 8.5) in areas such as Spain, Portugal, Australia, Morocco, and Algeria (Abdelkrim et al., 2022). However, our estimations indicate a decrease in Australia for the period 2081-2100 in both hypotheses. Additionally, reduced invasion is also projected in other regions of Africa, Asia, America, and Oceania under scenario SSP585. In contrast, our results for the period 2081-2100, under the Asian hypothesis, suggest that A. vittatus could be present in areas of Greenland and Iceland, similar to the estimates for A. albopictus in 2050 (Kamal et al., 2018).

In both hypotheses, invasion is projected to occur in tropical and subtropical regions. In the case of the native African hypothesis, it suggests a higher level of invasion toward the European continent and North America. Conversely, for the Asian hypothesis, the distribution and invasion rates at these sites are lower. In the future, under the African hypothesis, invasion is projected to extend further into the tropical and subtropical zones of all continents, including Asia. Conversely, under the Asian hypothesis, the extension into Europe remains limited, with a notable increase in Asia, particularly towards cold zones such as Greenland and Antarctica. Global transport networks, climate change, and increased urbanization have facilitated the spread of invasive species. Additionally, their ability to colonize new territories leads to economic, environmental, and public health damage due to various human activities that favor their proliferation (Schaffner et al., 2013; Weaver & Reisen, 2010). As a result, invasive species such as A. aegypti and A. albopictus have expanded their distribution range (Kraemer et al., 2019). In this case, sea lanes play a crucial role in the distribution and invasion of vectors at continental scales (Lounibos, 2002; Service & Place, 1997) as they enable access to new sites through seaports (Wilke et al., 2022). Consequently, A. vittatus, which had previously been documented only in Africa, Asia, and occasionally in Europe, has recently been reported in the Americas. Estimations suggest a future cosmopolitan behavior for this vector, with the potential to be found in continents where it has not been previously recorded and the possibility of colonizing colder climates, including suitable areas in Greenland, Iceland, and Antarctica.

In conclusion, A. vittatus exhibits a tropical and subtropical distribution, inhabiting rural, urban, and peri-urban areas at altitudes ranging from sea level to 2 500 m.a.s.l., with temperatures between 15 and 30 °C, in various landscapes such as forests, grasslands, deserts, and lakes. The mosquito has the potential to invade new areas in Europe, America, and Oceania. Climate change is expected to drive invasions towards colder subtropical zones in countries across Asia, Europe, and North America, regardless of its native range. In a period of around 80 years (2081-2100), invasion is suggested toward zones of Greenland and the Antarctic with the hypothesis that A. vittatus being native of Asia and reaching altitudes up to 5 000 m in China under the three scenarios. Therefore, given A. vittatus’ potential for invasion and ecological adaptability, vector control and epidemiological disease management programs should include monitoring for the presence of this vector in the locations described in this study. Likewise, it is important that in the areas where the vector has been recorded, studies are conducted to understand its population dynamics, feeding and reproductive behavior, life cycles, and preferred habitats. Similarly, given the recent knowledge of its invasion in the Americas, studies aimed at understanding its population dynamics and potential spread to new locations are recommended.

Ethical statement: the authors declare that they all agree with this publication and made significant contributions; that there is no conflict of interest of any kind; and that we followed all pertinent ethical and legal procedures and requirements. All financial sources are fully and clearly stated in the acknowledgments section. A signed document has been filed in the journal archives.

See supplementary material See supplementary material

Acknowledgments

The authors would like to express their gratitude to the Vice-rectory of Research at Universidad del Quindío for funding the translation of the manuscript. Additionally, special thanks are extended to Chrystian Camilo Sosa Arango, MSc., for their invaluable support in constructing the models.

References

Abdelkrim, O., Said, Z., & Souad, L. (2022). Global potential distribution of three underappreciated arboviruses vectors (Aedes japonicus, Aedes vexans and Aedes vittatus) under current and future climate conditions. Transboundary and Emerging Diseases, 69(4), e1160-e1171. https://doi.org/10.1111/tbed.14404 [ Links ]

Abdelkrim, O., Samia, B., Said, Z., & Souad, L. (2021). Modeling and mapping the habitat suitability and the potential distribution of Arboviruses vectors in Morocco. Parasite, 28(37). https://doi.org/10.1051/parasite/2021030 [ Links ]

Adeleke, M. A., Adebimpe, W. O., Hassan, A. W. O., Oladejo, S. O., Olaoye, I., Olatunde, G. O., & Adewole, T. (2013). Larval habitats of mosquito fauna in Osogbo metropolis, Southwestern Nigeria. Asian Pacific Journal of Tropical Biomedicine, 3(9), 673-677. https://doi.org/10.1016/S2221-1691(13)60137-9 [ Links ]

Afolabi, O. J., Akinneye, J. O., & Igiekhume, A. M. A. (2019). Identification, abundance, and diversity of mosquitoes in Akure South Local Government Area, Ondo State, Nigeria. The Journal of Basic and Applied Zoology, 80(39). https://doi.org/10.1186/s41936-019-0112-4 [ Links ]

Al Ashry, H. A., Kenawy, M. A., & Shobrak, M. (2014). Fauna of mosquito larvae (Diptera: Culicida) in Asir Provence, Kingdom of Saudi Arabia. Journal of the Egyptian Society of Parasitology, 44(1), 173-186. https://doi.org/10.12816/0006457 [ Links ]

Alarcón-Elbal, P. M., Rodríguez-Sosa, M. A., Newman, B. C., & Sutton, W. B. (2020). The first record of Aedes vittatus (Diptera : Culicidae) in the Dominican Republic: Public health implications of a potential invasive mosquito species in the Americas. Journal of Medical Entomology, 57(6), 2016-2021. https://doi.org/10.1093/jme/tjaa128 [ Links ]

Alencar, J., Mello, C. F. de, Marcondes, C. B., Anthony, É., Toma, H. K., Bastos, A. Q., Olsson, S., Silva, F., & Machado, S. L. (2021). Natural infection and vertical transmission of zika virus in sylvatic mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil. Tropical Medicine and Infections Disease, 6(99), 1-10. [ Links ]

Ali, K. M., Asha, A. V., & Aneesh, E. M. (2014). Bioecology and vectorial capacity of Aedes mosquitoes (Diptera: Culicidae) in Irinjalakuda Municipality, Kerala, India in relation to disease transmission. International Journal of Current Research and Academic Review, 2(4), 43-49. [ Links ]

Ali, N., Marjan, U., Khan, K., & Kausar, A. (2013). Study on mosquitoes of Swat Ranizai sub division of Malakand. Pakistan Journal of Zoology, 45(2), 503-510. [ Links ]

Alikhan, M., Ghamdi, K. Al, & Mahyoub, J. A. (2014). Aedes mosquito species in western Saudi Arabia. Journal of Insect Science, 14(69), 1-7. https://doi.org/10.1673/031.014.69 [ Links ]

Angel, B., & Joshi, V. (2008). Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Journal of Vector Borne Diseases, 45(1), 56-59. [ Links ]

Anges, Y., Gado, D., Ahadji-Dabla, K. M., Ramziyath, A., Carine, T., Achaz, A., Roland, T., & Lamine, B. M. (2018). Evaluation du comportement trophique de Aedes aegypti dans la ville de cotonou au sud du Bénin. European Scientific Journal, 14(33), 70. https://doi.org/10.19044/esj.2018.v14n33p70 [ Links ]

Baldacchino, F., Caputo, B., Chandre, F., Drago, A., della Torre, A., Montarsi, F., & Rizzoli, A. (2015). Control methods against invasive Aedes mosquitoes in Europe: A review. Pest Management Science, 71(11), 1471-1485. https://doi.org/10.1002/ps.4044 [ Links ]

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 [ Links ]

Bellini, R., Medici, A., Puggioli, A., Balestrino, F., & Carrieri, M. (2013). Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. Journal of Medical Entomology, 50(2), 317-325. https://doi.org/10.1603/ME12048 [ Links ]

Ben Ayed, W., Amraoui, F., M’Ghirbi, Y., Schaffner, F., Rhaim, A., Failloux, A. B., & Bouattour, A. (2019). A survey of Aedes (Diptera: Culicidae) mosquitoes in Tunisia and the potential role of Aedes detritus and Aedes caspius in the transmission of zika virus. Journal of Medical Entomology, 56(5), 1377-1383. https://doi.org/10.1093/jme/tjz067 [ Links ]

Benden, P. (2022). Global Shipping Lanes (Data set). Zenodo. https://doi.org/10.5281/zenodo.6361763 [ Links ]

Bigot, J. M. (1861). Trois diptères nouveaux de la Corse. Annales de La Société Entomologique de France, 1(1861), 227-229. [ Links ]

Bivand, R., Rowlingson, B., Sumner, M., & Hijmans, R. (2021). Package “rgdal”. bindings for the “geospatial” data abstraction library. http://rgdal.r-forge.r-project.orgLinks ]

Brown, J. E., Scholte, E. J., Dik, M., den Hartog, W., Beeuwkes, J., & Powell, J. R. (2011). Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerging Infectious Diseases, 17(12), 2335-2337. [ Links ]

Bueno-Marí, R. (2010). Bioecologia, diversidad e interés epidemiológico de los culícidos mediterráneos (Diptera: Culicidae) (Tesis Doctoral). Universidad de Valencia, España. [ Links ]

Bueno-Marí, R., & Jiménez-Peydró, R. (2010). Revisión y datos nuevos de Aedes vittatus (Bigot, 1861) para España (Diptera: Culicidae). Dugesiana, 17(2), 143-144. [ Links ]

Callot, J. (1962). Aedes vittatus in a new locality in France. Annales de Parasitologie Humaine et Comparee, 37(1-2). [ Links ]

Captain-Esoah, M., Baidoo, P. K., Frempong, K. K., Adabie-Gomez, D., Chabi, J., Obuobi, D., Amlalo, G. K., Veriegh, F. B., Donkor, M., Asoala, V., Behene, E., Boakye, D. A., & Dadzie, S. K. (2020). Biting behavior and molecular identification of Aedes aegypti (Diptera: Culicidae) subspecies in some selected recent yellow fever outbreak communities in Northern Ghana. Journal of Medical Entomology, 57(4), 1239-1245. https://doi.org/10.1093/jme/tjaa024 [ Links ]

Caputo, B., Moretti, R., Manica, M., Serini, P., Lampazzi, E., Bonanni, M., Fabbri, G., Pichler, V., della Torre, A., & Calvitti, M. (2019). A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area. Pest Management Science, 76(4), 1324-1332. https://doi.org/10.1002/ps.5643 [ Links ]

Carvalho, B. M., Rangel, E. F., & Vale, M. M. (2017). Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bulletin of Entomological Research, 107(4), 419-430. https://doi.org/10.1017/S0007485316001097 [ Links ]

Carvalho, D. O., McKemey, A. R., Garziera, L., Lacroix, R., Donnelly, C. A., Alphey, L., Malavasi, A., & Capurro, M. L. (2015). Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Neglected Tropical Diseases, 9(7), 1-15. https://doi.org/10.1371/journal.pntd.0003864 [ Links ]

Carvalho, V. L., & Long, M. T. (2021). Perspectives on new vaccines against arboviruses using insect-specific viruses as platforms. Vaccines, 9(3), 1-9. https://doi.org/10.3390/vaccines9030263 [ Links ]

Chandel, K., Mendki, M. J., Parikh, R. Y., Kulkarni, G., Tikar, S. N., Sukumaran, D., Prakash, S., Parashar, B. D., Shouche, Y. S., & Veer, V. (2013). Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080453 [ Links ]

Chandrasiri, P. K. G. K., Fernando, H. S. D., & De Silva, B. G. D. N. K. (2019). Pre-imaginal development of Aedes aegypti in drains containing polluted water in urban cities in Sri Lanka. International Journal of Tropical Insect Science, 40(2), 467-471. https://doi.org/10.1007/s42690-019-00079-6 [ Links ]

Chepkorir, E., Venter, M., Lutomiah, J., Mulwa, F., Arum, S., Tchouassi, D. P., & Sang, R. (2018). The occurrence, diversity and blood feeding patterns of potential vectors of dengue and yellow fever in Kacheliba, West Pokot County, Kenya. Acta Tropica, 186(2018), 50-57. https://doi.org/10.1016/j.actatropica.2018.07.008 [ Links ]

Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M., & Kramer, L. D. (2014). The effect of temperature on life history traits of Culex mosquitoes. Journal of Medical Entomology, 51(1), 55-62. https://doi.org/10.1603/ME13003 [ Links ]

Coluzzi, M. (1961). Sulla presenza in Italia di Aedes (Finlaya) echinus e di Aedes (Stegomyia) vittatus (Diptera, Culicidae). Bollettino della Società Entomologica Italiana, 91, 77-79. [ Links ]

Cui, J., Li, S., Zhao, P., & Zou, F. (2013). Flight capacity of adult Culex pipiens pallens (Diptera: Culicidae) in relation to gender and day-age. Journal of Medical Entomology, 50(5), 1055-1058. https://doi.org/10.1603/ME12078 [ Links ]

da Cruz-Ferreira, D. A., Degener, C. M., De Almeida Marques-Toledo, C., Bendati, M. M., Fetzer, L. O., Teixeira, C. P., & Eiras, Á. E. (2017). Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasites and Vectors, 10(1), 1-11. https://doi.org/10.1186/s13071-017-2025-8 [ Links ]

Day, J. F. (2016). Mosquito oviposition behavior and vector control. Insects, 7(4), 65. https://doi.org/10.3390/insects7040065 [ Links ]

Denlinger, D. L., & Armbruster, P. A. (2014). Mosquito diapause. Annual Review of Entomology, 59(1), 73-93. https://doi.org/10.1146/annurev-ento-011613-162023 [ Links ]

Diagne, C. T., Faye, O., Guerbois, M., Knight, R., Diallo, D., Faye, O., Ba, Y., Dia, I., Weaver, S. C., Sall, A. A., & Diallo, M. (2014). Vector competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus. American Journal of Tropical Medicine and Hygiene, 91(3), 635-641. https://doi.org/10.4269/ajtmh.13-0627 [ Links ]

Diallo, D., Diagne, C. T., Hanley, K. A., Sall, A. A., Buenemann, M., Ba, Y., Dia, I., Weaver, S. C., & Diallo, M. (2012a). Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal. Parasites and Vectors, 5(1), 1-17. https://doi.org/10.1186/1756-3305-5-286 [ Links ]

Diallo, D., Sall, A. A., Buenemann, M., Chen, R., Faye, O., Diagne, C. T., Faye, O., Ba, Y., Dia, I., Watts, D., Weaver, S. C., Hanley, K. A., & Diallo, M. (2012b). Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern senegal. PLoS Neglected Tropical Diseases, 6(6), 1-14. https://doi.org/10.1371/journal.pntd.0001649 [ Links ]

Diallo, D., Sall, A. A., Diagne, C. T., Faye, O., Faye, O., Ba, Y., Hanley, K. A., Buenemann, M., Weaver, S. C., & Diallo, M. (2014). Zika virus emergence in mosquitoes in Southeastern Senegal, 2011. PLoS ONE, 9(10), 4-11. https://doi.org/10.1371/journal.pone.0109442 [ Links ]

Diallo, M., Thonnon, J., Traore-Lamizana, M., & Fontenille, D. (1999). Vectors of Chikungunya virus in Senegal: Current data and transmission cycles. American Journal of Tropical Medicine and Hygiene, 60(2), 281-286. https://doi.org/10.4269/ajtmh.1999.60.281 [ Links ]

Díaz-Martínez, I., Diéguez-Fernández, L., Santana-Águila, B., Atiénzar de la Paz, E. M., Ruiz-Domínguez, D., & Alarcón-Elbal, P. M. (2021). Nueva introducción de Aedes vittatus (Diptera: Culicidae) en la región Oriental de Cuba: Caracterización ecológica y relevancia médica. InterAmerican Journal of Medicine and Health, 4(2021), 10-15. https://doi.org/10.31005/iajmh.v4i.175 [ Links ]

Díez-Fernández, A., Martínez-De La Puente, J., Ruiz, S., Gutiérrez-López, R., Soriguer, R., & Figuerola, J. (2018). Aedes vittatus in Spain: Current distribution, barcoding characterization and potential role as a vector of human diseases. Parasites and Vectors, 11(1), 1-6. https://doi.org/10.1186/s13071-018-2879-4 [ Links ]

Diniz, D. F. A., De Albuquerque, C. M. R., Oliva, L. O., De Melo-Santos, M. A. V., & Ayres, C. F. J. (2017). Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites and Vectors, 10(1), 1-13. https://doi.org/10.1186/s13071-017-2235-0 [ Links ]

Echeverry-Cárdenas, E., López-Castañeda, C., Carvajal-Castro, J. D., & Aguirre-Obando, O. A. (2021). Potential geographic distribution of the Tiger Mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia. PLOS Neglected Tropical Diseases, 15(5), e0008212. https://doi.org/10.1101/2020.03.13.990440 [ Links ]

Eritja, R., Palmer, J. R. B., Roiz, D., Sanpera-Calbet, I., & Bartumeus, F. (2017). Direct evidence of adult Aedes albopictus dispersal by car. Scientific Reports, 7(1), 1-15. https://doi.org/10.1038/s41598-017-12652-5 [ Links ]

Eritja, R., Rubido Bará, M., Delacour Estrella, S., Bengoa, M., & Ruiz Arrondo, I. (2018). Ciencia ciudadana y biodiversidad: primera cita de Aedes (Fredwardsius) vittatus (Bigot, 1861) (Diptera: Culicidae) en Galicia, mediante el proyecto Mosquito Alert. Anales de Biología, 40(2018), 41-45. [ Links ]

Esena, R. K., Amoyaw, F. P., & Doku-Amponsah, K. (2013). Aedes (Stegomyia) mosquitoes in the Ashanti region of Ghana: Implications for yellow fever paucity. Journal of Biology, Agriculture and Healthcare, 3(6), 131-143. [ Links ]

Eshag, O. S., Bashir, N. H., & Dukeen, M. Y. (2019). Prevalence, habitat and productivity profiles of Aedes mosquitoes (Diptera: Culicidae) in Sennar state, Sudan. International Journal of Mosquito Research, 6(6), 102-108. [ Links ]

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016 [ Links ]

Ezeakacha, N. F., & Yee, D. A. (2019). The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasites and Vectors, 12(1), 1-11. https://doi.org/10.1186/s13071-019-3391-1 [ Links ]

Ferede, G., Tiruneh, M., Abate, E., Kassa, W. J., Wondimeneh, Y., Damtie, D., & Tessema, B. (2018). Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiology and Health, 40(2018), e2018015. https://doi.org/10.4178/epih.e2018015 [ Links ]

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086 [ Links ]

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In Intergovernmental Panel on Climate Change (IPCC) (Eds.), Climate Change 2013: the physical science basis Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 741-866). Cambridge University Press. [ Links ]

Flynn, C. M., & Mauritsen, T. (2020). On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 20(13), 7829-7842. https://doi.org/10.5194/acp-20-7829-2020 [ Links ]

Fonseca, D. M., Kaplan, L. R., Heiry, R. A., & Strickman, D. (2015). Density-dependent oviposition by female Aedes albopictus (Diptera: Culicidae) spreads eggs among containers during the summer but accumulates them in the fall. Journal of Medical Entomology, 52(4), 705-712. https://doi.org/10.1093/jme/tjv060 [ Links ]

Freyvogel, T. A., & McClelland, G. A. H. (1969). Differences in hydrolase isozymes of Italian and Rhodesian strains of Aedes vittatus (Bigot) (Diptera: Culicidae) and their hybrids. Proceedings of the Royal Entomological Society of London. Series A, General Entomology, 44(4-6), 80-83. https://doi.org/10.1111/j.1365-3032.1969.tb00831.x [ Links ]

Gaud, J. (1947). Contribution à l’étude des Culicides au Maroc, quatre espèces nouvelles pour la faune locale. Bulletin de la Société des Sciences Naturelles du Maroc, 25-27(1947), 204-206. [ Links ]

Gil-Collado, J. (1930). Datos actuales sobre la distribución geográfica de los Culicidos españoles. Eos: Revista Española de Entomología, 6(4), 329-347. [ Links ]

Girard, M., Nelson, C. B., Picot, V., & Gubler, D. J. (2020). Arboviruses: A global public health threat. Vaccine, 38(2020), 3989-3994. [ Links ]

Guagliardo, S. A., Barboza, J. L., Morrison, A. C., Astete, H., Vazquez-Prokopec, G., & Kitron, U. (2014). Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 8(8), e3033. https://doi.org/10.1371/journal.pntd.0003033 [ Links ]

Guarido, M. M., Riddin, M. A., Johnson, T., Braack, L. E. O., Schrama, M., Gorsich, E. E., Brooke, B. D., Almeida, A. P. G., & Venter, M. (2021). Aedes species (Diptera: Culicidae) ecological and host feeding patterns in the north-eastern parts of South Africa, 2014-2018. Parasites and Vectors, 14(1), 1-14. https://doi.org/10.1186/s13071-021-04845-9 [ Links ]

Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157(2-3), 89-100. https://doi.org/10.1016/s0304-3800(02)00204-1 [ Links ]

Global Biodiversity Information Facility (GBIF). (2021). Occurrence download. https://doi.org/10.15468/dl.hn3efj [ Links ]

Hamon, J., & Remmert, H. (1952). Capture dans les pyrénées-orientales d’Aedes (stegomyia) vittatus bigot et d’Aedes (ochlerotatus) pullatus coquillet. Vie et Milieu, 3(4), 441-443. [ Links ]

Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., & Zelinka, M. (2022). Climate simulations: recognize the ‘hot model’ problem. Nature, 605(7908), 26-29. https://doi.org/10.1038/d41586-022-01192-2 [ Links ]

Hijmans, R., Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Golicher, D., Gray, J., Greenberg, J. A., Hiemstra, P., Karney, C., Mattiuzzi, M., Mosher, S., & Wueest, R. (2020a). Package “raster”. Geographic Data Analysis and Modeling. https://rspatial.org/rasterLinks ]

Hijmans, R., Phillips, S., Leathwick, J., & Elith, J. (2020b). Package “dismo”. Species Distribution Modeling. https://rspatial.org/raster/sdm/Links ]

Huang, Y. M. (1977). Notes on the taxonomic status of Aedes vittatus (Diptera: Culicidae). Contributions of the American Entomological Institute, 14(1), 113-124. [ Links ]

Idowu, O. A., Adeleke, M. A., & Aina, T. M. (2012). Evaluation of indoor breeding activities of mosquitos during the dry season in Abeokuta, Southwestern Nigeria. Journal of Environmental Health Research, 12(01), 25-28. [ Links ]

Ilahi, I., & Suleman, M. (2013). Species composition and relative abundance of mosquitoes in Swat, Pakistan. International Journal of Innovation and Applied Studies, 2(4), 454-463. [ Links ]

Irving-Bell, R. J., Okoli, E. I., Diyelong, D. Y., Lyimo, E. O., & Onyia, O. C. (1987). Septic tank mosquitoes: competition between species in central Nigeria. Medical and Veterinary Entomology, 1(3), 243-250. https://doi.org/10.1111/j.1365-2915.1987.tb00350.x [ Links ]

Jiménez-García, D., & Peterson, A. T. (2019). Climate change impact on endangered cloud forest tree species in Mexico. Revista Mexicana de Biodiversidad, 90(2019), e902781. https://doi.org/10.22201/IB.20078706E.2019.90.2781 [ Links ]

Joannides, J., Dzodzomenyo, M., Azerigyik, F., Agbosu, E. E., Takashi, H., Iwanaga, S., Buchwald, A., & Rochford, R. (2021). Species composition and risk of transmission of Aedes-borne arboviruses around some Yellow hotspot areas in Northern Ghana. PLoS ONE, 16(6), e0234675. https://doi.org/10.1371/journal.pone.0234675 [ Links ]

Johnson, T., Braack, L., Guarido, M., Venter, M., & Gouveia Almeida, A. P. (2020). Mosquito community composition and abundance at contrasting sites in northern South Africa, 2014-2017. Journal of Vector Ecology, 45(1), 104-117. https://doi.org/10.1111/jvec.12378 [ Links ]

Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S., & Samy, A. M. (2018). Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Aedes albopictus under changing climate. PLoS ONE, 13(12), 1-21. https://doi.org/10.1371/journal.pone.0210122 [ Links ]

Khan, J., Tarin Khan, B., Naeem, M., Ismail, M., Ali Khan, S., Shah, M., & Abbasi, A. (2015). A survey of adult and larval mosquito fauna in Tehsil Daggar and Gagra of District Buner, Khyber Pakhtunkhwa, Pakistan. International Journal of Mosquito Research IJMR, 170(23), 170-174. [ Links ]

Kotsakiozi, P., Gloria-Soria, A., Caccone, A., Evans, B., Schama, R., Martins, A. J., & Powell, J. R. (2017). Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Neglected Tropical Diseases, 11(7), 1-20. https://doi.org/10.1371/journal.pntd.0005653 [ Links ]

Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., … Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854-863. https://doi.org/10.1038/s41564-019-0376-y [ Links ]

Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., Moore, C. G., Carvalho, R. G., Coelho, G. E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I. R., Teng, H. J., Brady, O. J., Messina, J. P., Pigott, D. M., Scott, T. W., Smith, D. L., … Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 30(4), e08347. https://doi.org/10.7554/eLife.08347 [ Links ]

Kumari, R., Kumar, K., & Chauhan, L. S. (2011). First dengue virus detection in Aedes albopictus from Delhi, India: Its breeding ecology and role in dengue transmission. Tropical Medicine and International Health, 16(8), 949-954. https://doi.org/10.1111/j.1365-3156.2011.02789.x [ Links ]

Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410 [ Links ]

Leyton, L. M., Aguirre-Obando, O. A., Duque, J. E., & García-Merchán, V. H. (2020). Effect of altitude on wing metric variation of Aedes aegypti (Diptera: Culicidae) in a region of the Colombian Central Andes. PLoS ONE, 15(8), e0228975. https://doi.org/10.1371/journal.pone.0228975 [ Links ]

Liu, B., Gao, X., Zheng, K., Ma, J., Jiao, Z., Xiao, J., & Wang, H. (2020). The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: an ecological niche modelling approach. Pest Management Science, 76(9), 3096-3107. https://doi.org/10.1002/ps.5861 [ Links ]

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x [ Links ]

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x [ Links ]

Lounibos, L. P. (2002). Invasive insect vectors of human disease. Annual Review of Entomology, 47(1), 233-266. [ Links ]

Marengo, J. A., Chou, S. C., Torres, R. R., Giarolla, A., Alves, L., & Lyra, A. (2014). Climate Change in Central and South America: Recent Trends, Future Projections, and Impacts on Regional Agriculture. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). [ Links ]

Marinho, R. A., Beserra, E. B., Bezerra-Gusmão, M. A., Porto, V. de S., Olinda, R. A., & dos Santos, C. A. C. (2016). Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Journal of Vector Ecology, 41(1), 1-10. https://doi.org/10.1111/jvec.12187 [ Links ]

Marques, R., Krüger, R. F., Peterson, A. T., De Melo, L. F., Vicenzi, N., & Jiménez-García, D. (2020). Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Veterinary Research, 51(1), 1-10. https://doi.org/10.1186/s13567-020-00802-z [ Links ]

Martins, V. E. P., Alencar, C. H., Kamimura, M. T., de Carvalho Araújo, F. M., de Simone, S. G., Dutra, R. F., & Guedes, M. I. F. (2012). Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS ONE, 7(7), 1-9. https://doi.org/10.1371/journal.pone.0041386 [ Links ]

McClelland, G. A. H., & Green, C. A. (1970). Subtle periodicity of pupation in rapidly developing mosquitos. Bulletin of the World Health Organization, 42(6), 951-955. [ Links ]

Medley, K. A. (2010). Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography, 19(1), 122-133. https://doi.org/10.1111/j.1466-8238.2009.00497.x [ Links ]

Medlock, J. M., Hansford, K. M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H., & Bortel, W. Van. (2012). A review of the invasive mosquitoes in Europe: Ecology, public health risks, and control options. Vector-Borne and Zoonotic Diseases, 12(6), 435-447. https://doi.org/10.1089/vbz.2011.0814 [ Links ]

Miller, B. R., Godsey, M. S., Crabtree, M. B., Savage, H. M., Al-Mazrao, Y., Al-Jeffri, M. H., Abdoon, A. M. M., Al-Seghayer, S. M., Al-Shahrani, A. M., & Ksiazek, T. G. (2002). Isolation and genetic characterization of Rift Valley fever virus from Aedes vexans arabiensis, Kingdom of Saudi Arabia. Emerging Infectious Diseases, 8(12), 1492-1494. https://doi.org/10.3201/eid0812.020194 [ Links ]

Mulwa, F., Lutomiah, J., Chepkorir, E., Okello, S., Eyase, F., Tigoi, C., Kahato, M., & Sang, R. (2018). Vector competence of Aedes bromeliae and Aedes vitattus mosquito populations from Kenya for chikungunya virus. PLoS Neglected Tropical Diseases, 12(10), 1-15. https://doi.org/10.1371/journal.pntd.0006746 [ Links ]

Mukwaya, L. G. (1974). Host preference in Aedes (Stegomyia) mosquitoes in Uganda. II. Studies on indoor and outdoor biting and resting behaviour with special reference to Aedes aegypti L. Acta Tropica, 31(2), 165-76. [ Links ]

Naimi, B. (2017). Package “usdm”: Uncertainty Analysis for Species Distribution Models. https://cran.r-project.org/web/packages/usdm/usdm.pdfLinks ]

Nasirian, H., Taghi, S. M., & Moosa-kazemi, S. H. (2014). New record of Aedes vittatus and Culiseta subochrea (Diptera: Culicidae) and their distribution from Shadegan wetland, South Western Iran. Journal of Entomology and Zoology Studies, 2(5), 271-275. [ Links ]

Nasir-ud-din, M. (1952). Mosquitoes breeding in tree-holes and bamboo stumps in Dacca (East Pakistan). Pakistan Journal of Health, 2(1952), 110. [ Links ]

Ngoagouni, C., Kamgang, B., Manirakiza, A., Nangouma, A., Paupy, C., Nakoune, E., & Kazanji, M. (2012). Entomological profile of yellow fever epidemics in the Central African Republic, 2006-2010. Parasites and Vectors, 5(1), 1-5. https://doi.org/10.1186/1756-3305-5-175 [ Links ]

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42(2017), 169-180. https://doi.org/10.1016/j.gloenvcha.2015.01.004 [ Links ]

O’Neill, S. L. (2018). The use of wolbachia by the world mosquito program to interrupt transmission of Aedes aegypti transmitted viruses. Dengue and Zika: Control and Antiviral Treatment Strategies 1062(2018), 355-360. https://doi.org/10.1007/978-981-10-8727-1 [ Links ]

Obi, O., Adebote, D., Nock, I., & Josiah, J. (2022). Ecology of Aedes vittatus (Diptera: Culicidae) in rock pools across agroecosystem in Northern Savanna, Nigeria. Journal of Vector Borne Diseases, 59(3), 265-274. https://doi.org/10.4103/0972-9062.342395 [ Links ]

Omar, K., Thabet, H. S., TagEldin, R. A., Asadu, C. C., Chukwuekezie, O. C., Ochu, J. C., Dogunro, F. A., Nwangwu, U. C., Onwude, O. C., Ezihe, E. K., Anioke, C. C., & Arimoto, H. (2021). Ecological niche modeling for predicting the potential geographical distribution of Aedes species (Diptera: Culicidae): A case study of Enugu State, Nigeria. Parasite Epidemiology and Control, 15(2021), e00225. https://doi.org/10.1016/j.parepi.2021.e00225 [ Links ]

Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A. T., Falconi, M., Contreras-Díaz, R. G., Martínez-Meyer, E., Barve, V., & Barve, N. (2020). ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11(10), 1199-1206. https://doi.org/10.1111/2041-210X.13452 [ Links ]

Pagac, B. B., Spring, A. R., Stawicki, J. R., Dinh, T. L., Lura, T., Kavanaugh, M. D., Pecor, D. B., Justi, S. A., & Linton, Y. M. (2021). Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Tropica, 213(2021), 105739. https://doi.org/10.1016/j.actatropica.2020.105739 [ Links ]

Patel, C. M. (2016). An updated checklist of mosquito fauna of Andaman and Nicobar groups of islands with note on endemic mosquito Fauna. International Journal of Mosquito Research, 3(2), 31-38. [ Links ]

Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M., MacQueen, D., Lemon, J., O’Brien, J., & O’Rourke, J. (2020). Package “sp”: Classes and Methods for Spatial Data. https://cran.r-project.org/web/packages/sp/vignettes/intro_sp.pdfLinks ]

Pérez-Menzies, M. G., Castillo Quesada, R. M., & Alfonso Herrera, Y. (2022). Primer registro de Aedes vittatus en la provincia de Santiago de Cuba. MEDISAN, 26(2), 446-454. [ Links ]

Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63-72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 [ Links ]

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions. Princeton University Press. https://doi.org/10.5860/choice.49-6266 [ Links ]

Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 [ Links ]

Phillips, S. J., Dudík, M., & Schapire, R. E. (2021). Maxent software for modeling species niches and distributions (Version 3.4.3). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2021-11-5. [ Links ]

Pradhan, P. (2016). Strengthening MaxEnt modelling through screening of redundant explanatory Bioclimatic Variables with Variance Inflation Factor analysis. Researcher, 8(5), 29-34. https://doi.org/10.7537/marsrsj080516.05 [ Links ]

Qutubuddin, M. (1960). The mosquito fauna of Kohat-Hangu Valley, West Pakistan. Medical Entomologist, 20(4), 355-362. [ Links ]

R CoreTeam. (2017). R: A Language and Environment for Statistical Computing (Vol. 2). https://www.r-project.org/Links ]

Rajavel, A. R., Natarajan, R., & Vaidyanathan, K. (2005). Mosquito collections in the Jeypore hill tracts of Orissa, India, with notes on three new country records, Culex (Lophoceraomyia) pilifemoralis, Culex (Lophoceraomyia) wilfredi, and Heizmannia (Heizmannia) chengi. Journal of the American Mosquito Control Association, 21(2), 121-127. https://doi.org/10.2987/8756-971X(2005)21(121:MCITJH)2.0.CO;2 [ Links ]

Reegan, A. D., Rajiv Gandhi, M., Cruz Asharaja, A., Devi, C., & Shanthakumar, S. P. (2020). COVID-19 lockdown: impact assessment on Aedes larval indices, breeding habitats, effects on vector control programme and prevention of dengue outbreaks. Heliyon, 6(10), e05181. https://doi.org/10.1016/j.heliyon.2020.e05181 [ Links ]

Reinert, J. F. (2000). Description of Fredwardsius, a new subgenus of Aedes (Diptera: Culicidae). European Mosquito Bulletin, 6(2000), 1-7. [ Links ]

Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects, 9(4), 158. https://doi.org/10.3390/insects9040158 [ Links ]

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Samic, K. C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42(2017), 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 [ Links ]

Richman, R., Diallo, D., Diallo, M., Sall, A. A., Faye, O., Diagne, C. T., Dia, I., Weaver, S. C., Hanley, K. A., & Buenemann, M. (2018). Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal. Parasites and Vectors, 11(1), 1-17. https://doi.org/10.1186/s13071-018-2832-6 [ Links ]

Roberts, D. M. (2001). Egg hatching of mosquitoes Aedes caspius and Ae. vittatus simulated by water vibrations. Medical and Veterinary Entomology, 15(2), 215-218. https://doi.org/10.1046/j.0269-283X.2001.00303.x [ Links ]

Roberts, D. (2004). Prolonged survival of eggs of the rock-pool mosquito, Aedes vittatus, in the extreme heat of the Arabian peninsula. Journal of Arid Environments, 57(2), 203-210. https://doi.org/10.1016/S0140-1963(03)00108-3 [ Links ]

Roberts, H. (2020). Aedes vittatus (Bigot, 1861) at Jebel Hafeet: A new mosquito species in the UAE. Tribulus, 28(2020), 32-36. [ Links ]

Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L., & Farajollahi, A. (2013). Climate change and range expansion of the asian tiger mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practitioners. PLoS ONE, 8(4), 1-9. https://doi.org/10.1371/journal.pone.0060874 [ Links ]

Rose, N. H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O. B., Ibe, N., Akorli, J., Otoo, S., Mutebi, J. P., Kriete, A. L., Ewing, E. G., Sang, R., Gloria-Soria, A., Powell, J. R., Baker, R. E., White, B. J., Crawford, J. E., & McBride, C. S. (2020). Climate and urbanization drive mosquito preference for humans. Current Biology, 30(18), 3570-3579. https://doi.org/10.1016/j.cub.2020.06.092 [ Links ]

Rúa-Uribe, G. L., Suárez-Acosta, C. del R., & Rojo, R. A. (2012). Implicaciones epidemiológicas de Aedes albopictus (Skuse) en Colombia. Revista Facultad Nacional de Salud Pública, 30(3), 328-337. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-386X2012000300009Links ]

Schaffner, F., Medlock, J. M., & Van Bortel, W. (2013). Public health significance of invasive mosquitoes in Europe. Clinical Microbiology and Infection, 19(8), 685-692. https://doi.org/10.1111/1469-0691.12189 [ Links ]

Scholte, E. J., Dijkstra, E., Blok, H., De Vries, A., Takken, W., Hofhuis, A., Koopmans, M., De Boer, A., & Reusken, C. B. E. M. (2008). Accidental importation of the mosquito Aedes albopictus into the Netherlands: A survey of mosquito distribution and the presence of dengue virus. Medical and Veterinary Entomology, 22(4), 352-358. https://doi.org/10.1111/j.1365-2915.2008.00763.x [ Links ]

Service, W. M. (1970). Studies on the biology and taxonomy of Aedes (Stegomyia) vittatus (Bigot) (Diptera: Culicidae) in Northern Nigeria. Transactions of the Royal Entomological Society of London, 122(4), 101-143. https://doi.org/0.1111/j.1365-2311.1970.tb00529.x [ Links ]

Service, M. W. (1974). Survey of the relative prevalence of potential yellow fever vectors in north-west Nigeria. Bulletin of the World Health Organization, 50(6), 487-494. [ Links ]

Service, M. W., & Place, P. (1997). Mosquito (Diptera : Culicidae) dispersal-the long and short of it. Journal of Medical Entomology, 34(6), 579-588. [ Links ]

Singh, H., Singh, O. P., Akhtar, N., Sharma, G., Sindhania, A., Gupta, N., & Valecha, N. (2019). First report on the transmission of Zika virus by Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) during the 2018 Zika outbreak in India. Acta Tropica, 199(2019), 105114. https://doi.org/10.1016/j.actatropica.2019.105114 [ Links ]

Stafford, D. M. (1981). Mosquito records from the Republic of Niger, with reference to the construction of the new “Trans-Sahara Highway”. Journal of Tropical Medicine and Hygiene, 84(3), 95-100. [ Links ]

Sudeep, A. B., & Shil, P. (2017). Aedes vittatus (Bigot) mosquito: An emerging threat to public health. Vector Borne Diseases, 54(4), 295-300. https://doi.org/10.4103/0972-9062.225833 [ Links ]

Sudeep, A., Mohandas, S., Bhanarkar, S., Ghodke, Y., & Sonawane, P. (2020). Vector competence of Aedes vittatus (Bigot) mosquitoes from India for Japanese encephalitis, West Nile, Chandipura and Chittoor viruses. Journal of Vector Borne Diseases, 57(3), 234-239. https://doi.org/10.4103/0972-9062.311776 [ Links ]

Suganthi, P., Govindaraju, M., Thenmozhi, V., & Tyagi, B. K. (2014). Survey of mosquito vector abundance in and around tribal residential areas. Journal of Entomology and Zoology Studies, 2(6), 233-239. [ Links ]

Suleman, M., & Khan, S. (1993). Notes on Aedes mosquitoes as diurnal pest of human in Abottabad area. Pakistan Journal of Zoology, 25(1993), 253-260. [ Links ]

Surendran, S. N., Jayadas, T. T. P., Thiruchenthooran, V., Raveendran, S., Tharsan, A., Santhirasegaram, S., Sivabalakrishnan, K., Karunakaran, S., Ponnaiah, B., Gomes, L., Malavige, G. N., & Ramasamy, R. (2021). Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka. Parasites and Vectors, 14(1), 1-13. https://doi.org/10.1186/s13071-021-04640-6 [ Links ]

Suzuki, T., Osei, J. H., Sasaki, A., Adimazoya, M., Appawu, M., Boakye, D., Ohta, N., & Dadzie, S. (2016). Risk of transmission of viral haemorrhagic fevers and the insecticide susceptibilitystatus of Aedes aegypti (Linnaeus) in some sites in Accra, Ghana. Ghana Medical Journal, 50(3), 136-141. https://doi.org/10.4314/gmj.v50i3.4 [ Links ]

Valencia-Marín, B. S., Gandica, I. D., & Aguirre-Obando, O. A. (2020). The Mayaro virus and its potential epidemiological consequences in Colombia: An exploratory biomathematics analysis. Parasites and Vectors, 13(1), 1-17. https://doi.org/10.1186/s13071-020-04354-1 [ Links ]

Vermeil, C. (1953). Aedes t·Watus Bigot 1861, culicide nouveau pour Ia Tunisie. Le Bulletin de la Société de Pathologie Exotique, 46(1953), 338. [ Links ]

Weaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. Antiviral Research, 85(2), 328-345. https://doi.org/10.1016/j.antiviral.2009.10.008 [ Links ]

Weeratunga, P., Rodrigo, C., Fernando, S. D., & Rajapakse, S. (2017). Control methods for Aedes albopictus and Aedes aegypti. Cochrane Database of Systematic Reviews, 2017(8), CD01275. https://doi.org/10.1002/14651858.CD012759 [ Links ]

Wilke, A. B. B., Chase, C., Vasquez, C., Carvajal, A., Medina, J., Petrie, W. D., & Beier, J. C. (2019). Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-51787-5 [ Links ]

Wilke, A. B. B., Vasquez, C., Carvajal, A., Moreno, M., Petrie, W. D., & Beier, J. C. (2022). Mosquito surveillance in maritime entry ports in Miami-Dade County, Florida to increase preparedness and allow the early detection of invasive mosquito species. PLoS ONE, 17(4), e0267224. https://doi.org/10.1371/journal.pone.0267224 [ Links ]

Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Diseases, 14(1), 1-31. https://doi.org/10.1371/journal.pntd.0007831 [ Links ]

Zahouli, J. B. Z., Koudou, B. G., Müller, P., Malone, D., Tano, Y., & Utzinger, J. (2017a). Effect of land-use changes on the abundance, distribution, and host-seeking behavior of Aedes arbovirus vectors in oil palm-dominated landscapes, southeastern Côte d’Ivoire. PLoS ONE, 12(12), 1-26. https://doi.org/10.1371/journal.pone.0189082 [ Links ]

Zahouli, J. B. Z., Koudou, B. G., Müller, P., Malone, D., Tano, Y., & Utzinger, J. (2017b). Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Neglected Tropical Diseases, 11(7), 1-23. https://doi.org/10.1371/journal.pntd.0005751 [ Links ]

Received: February 16, 2023; Revised: September 06, 2023; Accepted: May 16, 2024

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License