SciELO - Scientific Electronic Library Online

vol.28 número1Existence conditions for k-barycentric olson constantHydrostatic limit for the symmetric exclusion process with long jumps: supper-diffusive case índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista de Matemática Teoría y Aplicaciones

versão impressa ISSN 1409-2433


CHOQUE-RIVERO, Abdon E.; KHAILOV, Evgenii N.  e  GRIGORIEVA, Ellina V.. Optimizing the quarantine cost for suppression of the COVID-19 epidemic in México. Rev. Mat [online]. 2021, vol.28, n.1, pp.55-78. ISSN 1409-2433.

This paper is one of the few attempts to use the optimal control theory to find optimal quarantine strategies for eradication of the spread of the COVID-19 infection in the Mexican human population. This is achieved by introducing into the SEIR model a bounded control function of time that reflects these quarantine measures. The objective function to be minimized is the weighted sum of the total infection level in the population and the total cost of the quarantine. An optimal control problem reflecting the search for an effective quarantine strategy is stated and solved analytically and numerically. The properties of the corresponding optimal control are established analytically by applying the Pontryagin maximum principle. The optimal solution is obtained numerically by solving the two-point boundary value problem for the maximum principle using MATLAB software. A detailed discussion of the results and the corresponding practical conclusions are presented.

Palavras-chave : coronavirus; quarantine cost; Pontryagin maximum principal; optimal control..

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )