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Abstract
Ray tracing is a rendering technique that is highly praised for its realism and image quality. 
Nonetheless, this is a computationally intensive task that is slow compared to other rendering 
techniques like rasterization. Bounding Volume Hierarchy (BVH) is a primitive subdivision 
acceleration mechanism that is the mainly used method for accelerating ray tracing in modern 
solutions. It is regarded as having better performance against other acceleration methods. 
Another well-known technique is Kd-Trees that uses binary space partitioning to adaptively 
subdivide space with planes. In this research, we made an up-to-date evaluation of both 
acceleration structures, using state-of-the-art BVH and Kd-Trees algorithms implemented in 
C, and found out that the Kd-Trees acceleration structure provided better performance in all 
defined scenarios on a modern x86 CPU architecture. 
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Resumen
Ray-tracing es una técnica de sintetizado de imágenes que destaca por el gran realismo y 
calidad que puede brindar en una imagen. Sin embargo, esta técnica es computacionalmente 
intensiva y lenta en comparación a otras metodologías de sintetizado tal como rasterización. 
Las Jerarquías de Volúmenes Limítrofes (BVH por sus siglas en inglés) son un mecanismo 
de aceleración basado en subdivisión de primitivas cuyo principal uso es la aceleración de 
ray-tracing en soluciones modernas. Comúnmente es referida como una solución que provee 
mejor aceleración con respecto a otras técnicas. Otra técnica bien conocida son los árboles-Kd 
(Kd-Trees en inglés), los cuales usan particionamiento de espacio binario con división adaptativa 
de planos. En esta investigación realizamos una evaluación actualizada de ambas estructuras 
de aceleración, usando algoritmos del estado del arte de BVH y Kd-Trees implementados en 
el lenguaje C. Entre los hallazgos encontramos que Kd-Trees provee mejor aceleración en una 
arquitectura x86 moderna para los escenarios planteados.

Introduction
Ray tracing is the holy grail in computer graphics when it comes to its capacity of rendering 
realistic, high-quality images [1], but this is paid with rendering time, ray tracing is considered 
to be slow when compared against other techniques such as rasterization [1].
The way that ray tracing works is by defining a tridimensional scene that contains an origin 
(represented by a (x, y, z) coordinate), a projection plane, and several objects (primitives) that 
are part of the scene [2]. Mathematical rays are cast from the origin to each one of the pixels 
from a projection plane that represents the screen image that a user sees. If an intersection is 
detected between the ray and one or several objects from the scene, the color of the object with 
the closest intersection to the origin is the one that is painted for that pixel. This process repeats 
for all the pixels that are part of the projection plane. [2]
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The algorithm for a basic ray tracer is quite simple. It is composed of a nested loop in which the 
external loop iterates through the vertical pixels of the projection plane, and the internal loop 
iterates through the horizontal pixels [9]. A ray is generated for each coordinate (composed of 
the horizontal pixel x and the vertical pixel y) to calculate its intersection (if any) with the nearest 
object from the scene, in order to print the color of that object in the screen. If no intersection 
is detected, a default color is assigned [2]. Figure 1 displays the pseudocode of a ray tracer.

Figure 1. Ray tracer pseudocode.

It’s well documented that when rendering an image using the ray tracing algorithm, most of the 
time is spent in computing ray/object intersection [15]. The basic ray tracing technique (without 
acceleration structures) has an O(I n) time complexity. I represents the total number of pixels 
in the image, and n is the total number of objects that comprise the scene. Rendering time 
becomes unmanageable with scenes with a few thousand objects [2].
Several approaches have been developed to improve the ray/object intersection computation 
time. The two most popular techniques are Kd-Trees and Bounding Volume Hierarchy (BVH) 
[15].
The Bounding Volume Hierarchy acceleration structure uses a subdivision of the primitives 
(objects) that are part of the scene by creating a partitioned hierarchy of disjoint sets. Figure 
2 shows the BVH mechanism; the objects of the scene are included in containers to create a 
binary tree data structure, where the primitives of the scene are in the leaves of the tree, and 
each intermediate node represents a container that stores the elements of the nodes beneath 
it [1].

Figure 2. Bounding Volume Hierarchy diagram. Source: [15]

BVH provides rendering acceleration because when a ray is generated, its intersection is 
calculated for each of the nodes of the tree. If there is not an intersection with a node, all the 
subtree for that node can be ignored [15]. The performance gain goes from O(I  n) of the basic 
ray tracing algorithm to an average of O(I log n), which is the height of the binary tree [15].
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Kd-Trees are a variation of binary space partitioning trees (BSP) that subdivides tridimensional 
space with planes. The way that a BSP works is by creating a bounding box that contains the 
entire scene. If the number of objects included in that box is greater than a defined threshold, 
the box is split by a plane. This process continues recursively until a maximum defined depth 
of the tree is reached, or each leaf of the resulting tree contains a sufficiently small number of 
objects [15]. The splitting planes can be placed in arbitrary positions inside a bounding box as 
long it is perpendicular to one of the coordinate axes. This property of the Kd-Trees makes their 
construction and traversal more efficient compared to other types of BSPs [15]. The asymptotic 
complexity of Kd-Trees is the same as BVH, with an average of O(I log n) [15].
Figure 3 shows the Kd-Trees mechanism; the tree is built by recursively splitting the bounding 
box of the scene geometry perpendicular to one of the coordinate axes. As the figure shows, 
the first split goes along the x axis, so the triangle will be inside the container in the right. The 
left region is split several more times with axis-aligned planes. [1].

Figure 3. Kd-Trees diagram. Source: [15]

In this research, we evaluated the performance of state-of-the-art BVH and Kd-Trees 
acceleration structures for ray tracing in a modern CPU architecture. We implemented both 
methods in the C programming language and explored both algorithm’s performance in different 
scenes that simulate real rendering scenarios. Maintaining up-to-date performance evaluation 
of the acceleration structures in modern x86 CPUs could lead to new findings regarding its 
performance. These processors have several internal improvements that could favor a specific 
acceleration technique. We found that contrary to popular belief, Kd-Trees provided better 
performance than BVH in the defined experiments.
Different efforts for improving the performance of the ray tracing algorithm can be found in 
Background section. The description of our implementation of the acceleration structures are 
in Design. Methodology has the hardware used, the experiments and the method of analysis of 
the obtained data. Results section has the obtained results which are discussed in Discussion. 
Finally, in the Conclusion and Future Work section we provide our final remarks of the results 
obtained and propose other problems that could be explored.
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Background
There are several different approaches to improve the performance of the ray tracing algorithm. 
Some works have developed hybrid algorithms that combine ray tracing with rasterization, so 
for effects that require a lot of computational power, the cheaper rasterization technique is used 
[9]. There are commercial solutions that used this approach, like Nvidia RTX [6]. The downside 
is that it is not a pure ray tracing solution, and there is a compromise between image quality 
(photorealistic effects) and performance.
When using the GPU architecture for rendering an image with ray tracing, RAM-VRAM memory 
transactions are commonplace, partly due to the relatively small cache of GPU architecture. This 
makes memory bandwidth a bottleneck for performance [7,15]. Another initiative focused on the 
reduction of memory transactions to the GPU by compressing the transferred information [21]. 
This approach reduces the bottleneck caused by the memory bandwidth but adds time due to 
the compression and decompression of the data in all memory transactions. 
As mentioned before, ray/object intersection is where most rendering time is spent [15]. One 
of the first practical acceleration structure implementation through bounding objects was 
developed for the CPU architecture by [11]. Since that implementation, several works have 
been done to improve the performance of the BVH accelerator, like the explicit caching of node-
pairs to enhance the access time to the Bounding Volume Test Tree [5]. Another approach has 
created private workstack in to reduce memory access and inter-thread synchronization. The 
modifications mentioned above to the BVH algorithm creates new problems such as work-flow 
divergence and load-imbalance in several cases, which leads to degraded performance [3].
There is research to improve the performance of the BVH acceleration structure through 
tightly coupled heterogeneous computing [18]. The focus of this research was to utilize the full 
resources of processors that have an integrated GPU. The performance gain provided by the 
study was promising. Still, they don’t evaluate the performance of the Kd-Trees acceleration 
structures and require the use of CPUs with integrated GPUs for the acceleration gain.
Another approach for accelerating ray/object intersection are binary partitioning trees (BSP 
trees), in which the axis-aligned BSP Trees (Kd-Trees) are the most popular for ray tracing 
[1]. The first reported use of using a Kd-Trees for ray tracing was by [10]. Work to improve 
the shortcomings of a naive implementation of the Kd-Trees have been done by [4], where it 
implements a space-efficient representation that avoids redundant objects from leaf nodes. This 
approach highly improves the performance of the traversal during ray/object intersections.
Performance comparison between BVH and Kd-Trees has been performed in several research 
efforts, like the one in [19]. This effort is focused only on the GPU architecture, so they don’t 
provide insight into how both algorithms perform on the modern CPUs. Efforts like the one in [12] 
provides a performance evaluation of both algorithms, where Kd-Trees provided performance 
better in some scenarios. The main disadvantage of this research is that it was performed a long 
time ago when the typical CPU architecture only had one core and a very small cache memory 
[8].
As far as we know, there haven’t recent efforts to evaluate the performance of the BVH and 
Kd-Trees acceleration structures in recent (2018+) mainstream CPU architectures. In this 
research, we provided an up-to-date comparison of the performance of both algorithms, using 
our own implementation of state-of-art BVH and Kd-Trees algorithms in the C programming 
language.
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Design
In this research, we created our own ray tracer with BVH and Kd-Trees acceleration heavily 
based in the state of the art algorithms found in [15] and [1]. We used the C programming 
language as allow us to implement low-level optimizations for memory access and mathematical 
operations [22].
For instance, we avoided using pointers for the binary tree data structure of both acceleration 
methods. Instead, we flattened the tree and stored it in an array. Each element of the array is a 
struct that represents a node. The first child of the node will be stored in the index next to that 
node in the array; the second child’s index is stored in the struct [15].
Figure 4 shows a pointer representation of a binary tree, while figure 5 shows a flattened 
representation of the same tree stored in an array, like what we used. The traversal of an array 
is several times faster than the traversal of the same data structure using pointers [10, 15].

Figure 4. Pointer representation of a binary tree.

Figure 5. Flattened representation of a binary tree in an array.

To make an evaluation that contemplates real rendering scenarios, we implemented several 
types of primitives in the ray tracer: The included primitives are:

• Spheres.
• Cones.
• Cylinders.
• Discs.
• Triangles.
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Also, we implemented transparencies, reflection, and anti-aliasing effects as they are usually 
present in real-world use of ray tracing for rendering [1]. We also wanted to evaluate the 
performance of both algorithms with the presence of both effects.

Methodology
For the evaluation, we choose to employ a Factorial Analysis of Variance (ANOVA) experiment, 
as it provides a mechanism for evaluating the impact that several factors under research have on 
a response variable [13]. Using this methodology allowed us the assess the performance of the 
BVH and Kd-Trees acceleration structures and the effect that other factors had in rendering time.
A factor has different levels that could impact in some way the response variable [14]. ANOVA 
lets us determine if the influence of a specific factor is statistically significant.
The factors and the levels used for our evaluation are the following:
Objects: The number of objects in the scene directly impacts rendering time. The following 
amounts were used:

• 1000.
• 4000.
• 7000.
• 10000.
• 13000.

Image resolution: The more pixels that an image contains, the more level of detail it holds. 
Increasing the number of pixels (resolution) in an image increase rendering time [9]. We 
selected three common image resolutions:

• 1280 x 720.
• 1440 x 900.
• 1920 x 1080.

Effects: We used the 2k [13] form for evaluating the impact of the effects: anti-aliasing, reflections, 
and transparencies. This significantly reduced the number of experiments while allowing us to 
assess if influences in both algorithms’ performance. Visual effects directly increase rendering 
time [17]. All possible combinations of the following three effects were considered:

• AA: Anti-aliasing.
• RE: Reflection (5 levels).
• TR: Transparency (5 levels).

Acceleration algorithm: This is the most crucial factor of our experiment; the levels are:
• Kd-Trees.
• BVH.

There are 5 x 3 x 8 x 2= 240 combinations, as we decided to do 15 replications to increase the 
validity of the results, we ended up with 240 x 15=3600 runs of the experiment. We automated 
the execution and recollection of data trough scripts.
The equipment used to run the experiments is described in table 1.
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Table 1. Hardware description.

Characteristic Specification

Vendor AMD
CPU Model Ryzen 2600

Price($) 199
CPU Cores/Threads 6/12

Power Consumption(W) 65
CPU Cache L2/L3(MB) 3/16
CPU Frequency(GHz) 3.4-3.9

RAM (GB) 8
RAM Frequency (MHz) 2400

RAM Configuration Single Channel
Storage Type SSD

Storage Size (GB) 256

The scenes used for the experiments contained different objects randomly distributed through 
the x, y, z axis. We limited the random range to guarantee that all the objects were held inside the 
projection frame. We also randomized the sizes, shapes, and colors of the objects contained in 
the scene. In this way, we created a good representation of a ray-traced scene [15]. The factors 
of resolution, effects, and acceleration algorithm were adjusted to fit a specific combination of 
the experiment.
The response variable of the experiments is rendering time, as it represents performance [14].
Our research differs from [17], as they used an Accelerated Processing Unit (APU) to increase 
the performance of computationally expensive workloads. It also differs from [16] as they make 
a performance evaluation of the classic and BVH accelerated ray tracing algorithm using all the 
computing resources available in commodity hardware solutions.

Results
To comply with ANOVA adequacy requirements, we applied a square root transformation of the 
response variable [13]. Nonetheless, we present results de-transformed.
The results of the ANOVA analysis produced by R [20] for this experiment are shown in table 2.

Table 2. Anova table.

Characteristic Sum Sq Df F value Pr (>F)

Algorithm 99706 1 41426901.1 2.2e-16
Objects 376757 4 39134663.2 2.2e-16

Resolution 78398 2 12286865.3 2.2e-16
Effects 1211889 7 71932539.9 2.2e-16

Algorithm:Objects 5744 4 596614.8 2.2e-16
Algorithm:Resolution 6048 2 1256371.1 2.2e-16

Algorithm:Effects 226974 7 3993662.3 2.2e-16
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Average rendering time in function of the acceleration algorithm is presented in figures 6, 7, 8 
and 9 presents the average rendering time per effects, objects and resolution factors in function 
of the acceleration algorithm.

Figure 6. Average rendering time in function of the acceleration algorithm.

Figure 7. Average rendering time per effects in function of the acceleration algorithm.

Figure 8. Average rendering time per object quantity in function of the acceleration algorithm.
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Figure 9. Average rendering time per resolution in function of the acceleration algorithm.

The average rendering time of each acceleration algorithm is displayed in table 3. This time 
includes and summarizes all combinations of effects, resolution, and object quantities.

Table 3. Obtained metrics.

Characteristic Specification

Algorithm Average Time (s)
BVH 25.47

Kd-Trees 16.65

Two sample images generating through the experiments are found in figures 10 and 11. Both 
images were rendered at the maximum resolution with all the effects.

Figure 10. Scene with 7000 randomly distributed objects.
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Figure 11. Scene with 10000 randomly distributed objects.

Discussion
Table 2 shows that the factors defined for this research and its interactions are statistically 
different (as the low obtained p values demonstrates). With this information, we can conclude 
from the average rendering times that we obtained during the experiment.
The average rendering time per algorithm is summarized in Figure 6. The figure shows that for 
the defined experiment, Kd-Trees performs significantly better than BVH.
We proceeded to decompose the rendering time per each one of the factors defined for the 
experiment as it is shown in figures 7, 8 and 9. In all cases we found the same result, Kd-Trees 
has better performance than BVH.
For the case of effects in function of the acceleration algorithm, in figure 7, we see a tendency 
that as more effects are included in the image, the rendering time difference between BVH and 
Kd-Trees becomes larger. When an effect like anti-aliasing is included in a scene, it generates 
more rays and thus more mathematical operations and memory accesses during rendering [1]. 
More rays and memory accesses mean more traversals of the BVH and Kd-Trees binary trees. 
As we see from the results, Kd-Trees perform better when these two factors are increased.
For the case of object quantity in function of the acceleration algorithm, we found out that in all 
instances, Kd-Trees perform better. Still, we don’t see any tendency as object quantity increases. 
Object quantity is directly related to the size of the BVH and Kd-Trees trees, and thus is directly 
related to memory accesses [15]. As our results showed, it seems that KD-Trees performs better 
than BVH when memory accesses are increased.
Increasing the resolution of an image, adds more mathematical operations and memory 
accesses, as is displayed in figure 9. Again, Kd-Trees performed better than BVH for all 
resolutions. We observed that as the number of pixels increased, the advantage of the Kd-Trees 
accelerator over BVH became larger.
Modern x86 CPUs are more efficient as they have a better internal design. For instance, modern 
CPUs have fewer pipeline stalls, more cache memory, better memory access mechanisms, 
and improved branch prediction than older processors [8]. All these improvements could favor 
Kd-Trees in modern architecture. As we saw, for all defined scenarios, Kd-Trees performed 
better than BVH. Nonetheless, this is not the preferred acceleration technique in modern 
renderers [1,15].
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Trade-offs between BVH and Kd-Trees are well documented [15]; for instance, BVH is more 
efficient building the tree than Kd-Trees, and Kd-Trees deliver slightly faster ray intersection 
tests. From our experiment, we can observe in table 3 the average rendering time of both 
algorithms, in which kD-Trees is 34% faster than BVH. In this case, Kd-Trees is considerably 
faster, not slightly.

Conclusions and Future Work
We explored the performance of the BVH and Kd-Trees algorithm in a modern x86 CPU. Our 
tests showed favorable results for the Kd-Trees acceleration structure in all tests. Our ray tracer 
included anti-aliasing, reflections, transparencies, different primitives and resolutions.
This research provided an up-to-date comparison of both algorithms in a modern processor. We 
implemented the ray tracer using the C programming language and did our implementations of 
both algorithms as fair as possible. Legacy x86 architectures are quite different from modern 
x86 processors as they have more cache memory, better memory access systems, reduced 
pipeline stalls, and improve prediction mechanisms [8]. These factors could favor the KD-Trees 
ray/object intersection mechanism.
For future work we would like to explore more deeply the reason of the advantage of Kd-Trees 
over BVH, in this case we would like to explore memory access patterns, processor affinity 
and cache misses in both modern and legacy (at least 15 years older) x86 processors. Also, 
we would like to perform the tests in different programming languages, as different previous 
evaluations were performed in GPUs with CUDA [19], others were performed in C++ with legacy 
processors [7], so we would like to discard programming language as a driving factor for the 
performance differences. Finally, we would like to verify if the advantage of KD-Trees vs BVH 
remains in different CPU architectures like ARM, RISC-V and MIPS.
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