
Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202140

Hybrid storage engine for geospatial
data using NoSQL and SQL paradigms
Un motor de almacenamiento híbrido
para datos geoespaciales integrando
los paradigmas NoSQL y SQL
José A. Herrera-Ramírez1, Marlen Treviño-Villalobos2,
Leonardo Víquez-Acuña3

Fecha de recepción: 12 de noviembre de 2019
Fecha de aprobación: 9 de marzo de 2020

Herrera-Ramírez, J. A; Treviño-Villalobos, M;
Víquez-Acuña, L. Hybrid storage engine for geospatial data
using NoSQL and SQL paradigms. Tecnología en Marcha.
Vol. 34-1. Enero-Marzo 2021. Pág 40-54.

 https://doi.org/10.18845/tm.v34i1.4822

1 Instituto Tecnológico de Costa Rica, Campus Local San Carlos. Costa Rica.
E-mail: josehr1108@gmail.com

2 Instituto Tecnológico de Costa Rica. Campus Local San Carlos. Costa Rica.
E-mail: mtrevino@tec.ac.cr.

 https://orcid.org/0000-0002-1135-0650
3 Instituto Tecnológico de Costa Rica. Campus Local San Carlos. Costa Rica.

E-mail: lviquez@tec.ac.cr

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 41

Keywords
Database; SQL; NoSQL; ToroDB; MongoDB; PostgreSQL; replication; mirroring.

Abstract
The design and implementation of services to handle geospatial data involves thinking about
storage engine performance and optimization for the desired use. NoSQL and relational
databases bring their own advantages; therefore, it is necessary to choose one of these options
according to the requirements of the solution. These requirements can change, or some
operations may be performed in a more efficient way on another database engine, so using
just one engine means being tied to its features and work model. This paper presents a hybrid
approach (NoSQL-SQL) to store geospatial data on MongoDB, which are replicated and mapped
on a PostgreSQL database, using an open source tool called ToroDB Stampede; solutions then
can take advantage from either NoSQL or SQL features, to satisfy most of the requirements
associated to the storage engine performance. A descriptive analysis to explain the workflow of
the replication and synchronization in both engines precedes the quantitative analysis by which
it was possible to determine that a normal database in PostgreSQL has a shorter response
time than to perform the query in PostgreSQL with the hybrid database. In addition, the type of
geometry increases the update response time of a materialized view.

Palabras clave
Base de datos; SQL; NoSQL; ToroDB; MongoDB; PostgreSQL; replicación; base de datos
espejo.

Resumen
El diseño e implementación de servicios para el manejo de datos geoespaciales implica pensar
en el rendimiento del motor de almacenamiento y su optimización para cada uso deseado. Las
bases de datos relacionales y no relacionales aportan sus propias funcionalidades, por lo tanto,
es necesario elegir una de estas opciones de acuerdo con los requisitos de la solución. Estos
requisitos pueden cambiar o tal vez algunas operaciones puedan realizarse de manera más
eficiente en otro motor de base de datos, por lo que usar solo un motor significa estar vinculado a
sus características y modelo de trabajo. Este artículo presenta un enfoque híbrido (NoSQL-SQL)
para almacenar datos geoespaciales en MongoDB, estos datos son replicados y mapeados en
una base de datos PostgreSQL, utilizando una herramienta de código abierto llamada ToroDB
Stampede; las soluciones pueden aprovechar las funciones NoSQL o SQL para satisfacer la
mayoría de los requisitos asociados con el rendimiento del motor de almacenamiento. Aquí se
presenta un análisis descriptivo para explicar el flujo de trabajo de la replicación y sincronización
en ambos motores; además, el análisis cuantitativo, mediante el cual se logró determinar que
una base de datos normal en PostgreSQL tiene un tiempo de respuesta menor que realizar
la consulta en PostgreSQL con la base de datos híbrida; asimismo, que el tipo de geometría
incrementa el tiempo de respuesta de actualización de una vista materializada.

Introduction
Finding the proper database for a solution can be vital when talking about performance or any
other specific requirement. The set of database engines that support geographic data is limited
on both relational and non-relational paradigms, so every key aspect is important when deciding
between multiple options: “… the success of geospatial application in any project depends upon

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202142

the selection, collection, sorting and end-usage of data” [1]. Therefore, the database engine
features are an important aspect when deciding which one to use in order to satisfy the data
management requirements.

In general, NoSQL databases in the non-relational databases paradigm are effective
when handling huge amounts of data due to their ability to scale horizontally, the speed
of simple operations, the facility to replicate and distribute data between several servers,
and the fact of not being tied to a rigid defined structure, which gives them flexibility,
among other aspects [2]. In the last years, these databases have been growing with
support on geospatial data handling [3], implementing features such as geographic
indexing and some usual spatial operations, also increasing compatibility with external
geographic tools such as GeoServer.
On the other hand, relational databases are efficient when handling large amounts of data
that have a fixed structure and guarantee ACID (atomicity, consistency, isolation, durability)
properties in transactions [4]. Some of them also have better geospatial support than most
NoSQL engines, providing more complex spatial operations and indexes; they are more easily
compatible with other geospatial tools like Mapserver and QGIS [5].
Knowing the main features of both paradigms could help when making a decision to define a
storage engine for a specific solution, but the requirements might change as this solution evolves
in time, demanding more needs that the current paradigm could not support at his best. Being
tied to just relational or non-relational paradigms means that solutions cannot take advantage
from the features of the other one, so it would be helpful to achieve a hybrid approach to benefit
from both paradigms’ features [4]. A hybrid database model is a database system that uses two
or more different database models in a system [6] and functions as an abstraction layer that
sits on top of databases, for example in the paradigms SQL and NoSQL [7]. Some benefits in
using multiple database models in a system are flexibility [8], increased performance [9, 10, 11],
logical distribution [12], their design conceived for the web [6, 13].
Actually, there are some approaches that integrate the SQL and NoSQL paradigms in a hybrid
database [6, 9, 14, 15]. However, there are very few papers proposing hybrid databases that
work with PostgreSQL and MongoDB. The properties of these databases make them stand out
in each of their respective paradigms. PostgreSQL was one of the first databases to address
spatial issues [16]. PostgreSQL’s extension, PostGIS [17], is highly optimized for spatial queries
[18], and its large quantity of spatial functions make it very relevant. Meanwhile, there are
currently over 225 NoSQL databases [19]; in contrast MongoDB, to date, is the only document-
based NoSQL database that supports line intersection and point containment queries [18]. Also,
both Database Management Systems (DBMS) are open code, and Geoserver (an open source
server for sharing geospatial data) [20] is enabled to give them support, because in its version
2.11.4 this tool includes a data connection and publication component from MongoDB.
Another trend in the storage of spatial data is the big data [21, 22, 23, 24]. However, this type
of implementation requires very good computing conditions for data storage and processing. In
addition, it is necessary to analyze the issue of costs of the different technologies.
The intention of this paper is to provide a descriptive analysis of an hybrid (NoSQL/SQL) storage
engine’s setting up approach, supported by MongoDB and PostgreSQL engines, to serve as
backend for any WebGIS implementation or other desired use. The approach is based on a
MongoDB replica set, that is mapped and maintains a live mirror on a PostgreSQL database,
with help of a tool called ToroDB Stampede; the restructuring of mapped data in PostgreSQL
through materialized views to be used with PostGIS extension.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 43

An implementation example is explained in the discussion. In the example, 52 geographic
shapes are stored in two different MongoDB databases and replicated on PostgreSQL; the
results obtained are 294 tables, 52 materialized views and 294 triggers linked to each table.
We also intend to analyze the performance characteristics of the relational side of the proposed
environment against other PostgreSQL database with geographic shapes imported from QGIS
on Shapefile format, by making a statistic from a set of test samples designed with Apache
JMeter tool [25].
There are three test scenarios: the first consist on a performance comparation of both PostgreSQL
databases with a “select *” operation from a multipolygon shape with 21 616 tuples; the second
is another comparation with a “select Points within a Polygon” operation, where the query results
in 47 records; the third scenario is to analyze the time taken to refresh the materialized views on
the hybrid approach PostgreSQL database. The main results allowed to determine that a normal
database in PostgreSQL has a shorter response time than performing the query in PostgreSQL
with the hybrid database. The type of geometry also increases the update response time of a
materialized view.

Methodology

This section is aimed to analyze the methodology followed for the implementation of the hybrid
database (view figure 1). It was developed in six phases and lastly, the workflow of the proposed
environment, starting with the environment configuration and the necessary tools. The
subsequent topic here was the initialization of the ToroDB service for data replication. The third
aspect was importing the data into the MongoDB DBMS. Because the process of replicating
MongoDB documents in PostgreSQL divides the structures into several tables, a series of
materialized views were first generated to unify the data in a single table and facilitate the query
process; the implementation of triggers to maintain synchronization of data in the materialized
views, a topic addressed in phase 5. The final topic was the evaluation of the proposed hybrid
database. This process was meant to serve as a guide for readers to configure hybrid databases
for geospatial data integrating the NoSQL and SQL paradigms..

Figure 1. Methodology.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202144

Environment and tools overview

When talking about NoSQL and SQL main databases with geospatial support, MongoDB comes
in front of the few engines that support geographic features. PostgreSQL with PostGIS extension
is also one if not the most suitable solution when storing and handling geographic data on
relational databases [18]. These two engines and the ToroDB Stampede service set the base of
our hybrid storage engine approach.

ToroDB Stampede is a replication and mapping technology to maintain a live mirror of a MongoDB
replica set in a SQL database; it uses replica set oplog to keep track of the modifications in
MongoDB [18]. A replica set is a group of servers where each one runs a separate MongoDB
instance and stores the copy of the same data with failover and automatic recovery of member
nodes; this redundancy of data provides a level of fault tolerance against the loss of a single
database server [26].

Since ToroDB Stampede maps and synchronize the data unidirectionally, all the maintenance
operations must be carried out on the MongoDB replica set. No synchronization is made when
doing maintenance operations from PostgreSQL to MongoDB. Stampede maps the JSON
structure of a document on MongoDB into a relational schema on PostgreSQL, by taking every
document’s depth level and creating a table with its simple attributes (string, integers, and other
types of data), so any other object or array in the document is considered another depth level
and will end as a SQL table with its associated properties and some other metadata columns
[18]. See figure 2 for the mapping result of a GeoJSON Point feature data.

Considering this, a simple GeoJSON file imported on the MongoDB replica set could be
decomposed in many SQL tables, depending on the geometry type (because of the geometry
arrays hierarchy) or the complexity of the table’s properties. Therefore, all of these tables have
to be recomposed in order to form a functional data structure that PostGIS can handle. The next
section will clarify this aspect by analyzing the workflow of the proposed approach.

Initializing the ToroDB Stampede service

The Stampede service must be running before importing any document from MongoDB. The
environment configuration involves initializing the replica set on MongoDB, defining PostgreSQL
credentials to be used, and adjusting desired configuration on Stampede service. For detailed
information about installing, configuring or any other related topic, refer to ToroDB Stampede
official documentation [18].

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 45

Figure 2. JSON format mapped to SQL schema.

Source: ToroDB Stampede documentation

Importing the geographic data

Geographic data is available in several formats. Since the data will be primarily stored on the
MongoDB replica set, importing it into GeoJSON format is the best and only way to do it. But
before importing the GeoJSON file, it has to be prepared in an optimal format for import. We
chose to handle the GeoJSON file by leaving just the “features” array, so the whole file would
begin as an array of feature objects; this would make MongoDB treat every array element as a
document in MongoDB when importing [26], see figure 3.

Figure 3. JSON file required format to import.

Source: ToroDB Stampede documentation

The preparation of the file can be made with common text editors, or using some special tools
for editing large text files. When the file was at the required format, we could import it on the
MongoDB replica set by using the Mongoimport tool; but since we were using array notation, we
had to explicitly set the –jsonArray flag when running the command, and that would import every
array element as a document on the replica set [26].

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202146

Structuring generated SQL tables

Once the data has been replicated on the PostgreSQL side, there may be a bunch of generated
tables for a single document (view figure 2), as we mentioned before. Depth levels (objects or
arrays) properties in the document will be stored in an extra SQL table on PostgreSQL; therefore,
because of the nested array on geometries, different types of geometries will mean more or
fewer geometry tables.

This leads to the need of a well defined structure to support the spatial data with PostGIS
extension. Since the similar geometry types share a common structure, it is a good abstraction
practice to define functions that help to recompose the features based on their geometry
type, saving this composed structure in some desired schema [27]. Composed SQL structure
of a replicated shape will consist on a materialized view that incorporates the identifier, the
properties, and the final PostGIS geometry object. Materialized views are a more simple way
to define views that can be updated periodically and store data in a table-like form; accessing
them is often much faster than accessing the underlying tables directly or through a view [16].

ToroDB service maintains internal schemas on the PostgreSQL target database; it stores
metadata about the relation of the MongoDB collections and PostgreSQL tables, document parts
and their respective table [28]. Schema ToroDB could be helpful when defining the functions, as
it provides better management of the mapped dataset.

The query to create this materialized view needs to be defined by building a query text
dynamically. The taken approach in our probe was to define a function that would receive the
base table name (collection name), its origin schema, and the target schema where the view
would be defined. This would make it easier to select sub-tables by appending the suffix to the
base table name. PostGIS supports geometry definition from text with his ST GeomFromText
function [17], so when building the composing functions, geometry query is correctly defined in
a text variable, using aggregate functions to properly gather all the coordinates in an consistent
and ordered way, considering all geometry’s singularities, such as inner rings on polygons and
multiple geometry types on shapes.

Maintaining synchronization from MongoDB to PostgreSQL

ToroDB automatically keeps synchronization from MongoDB collection changes on the
respective generated tables, but since we were not working directly with these tables but with
the composed materialized views, changes on these tables needed to be reflected on the
materialized views opportunely, according to the availability requirements.

The solution adopted on this approach consist on triggering insertion, update and deletion events
on all the generated tables. Then, the trigger handler updates the helper table that describes the
materialized views update logs by taking the updated table in the trigger and finding the name
of the materialized view that it belongs to. The helper table is represented on figure 4.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 47

Figure 4. Helper table columns explained.

The trigger function gets the corresponding materialized view name, with help of ToroDB schema
‘doc part’ table and then does an upsert operation on the helper table, so if the materialized view
name is already inserted, it updates the ‘modifications’ column by incrementing it in one unit;
then it updates the ‘trig update’ column with the current timestamp.
Lastly, with the helper table working, we can use a scheduled job to analyze it in order to
determine if some materialized views need to be refreshed, with help of the job update column
on the mentioned helper table. Doing this will avoid to refresh the unnecessary materialized
views, saving time and computing cost.

Relational approaches analysis and tests
In this probe, we also developed a set of tests for comparing the performance of the PostgreSQL
replicated database from this approach with another geographic database on PostgreSQL with
tables generated from QGIS Shapefile imports. The shapes being tested are downloaded from
IDEHN (Spatial Data Infrastructure of the Huetar Norte Region) platform, available at http://www.
idehn.tec.ac.cr/.
These tests were developed with the Apache JMeter software, an application designed to
functional behavior tests and measure performance [25]. With this tool, it is easy to measure
performance on databases operations connecting them to JDBC API. A total of six tests were
carried out, which are described on table I.
The test suite was executed with an Intel NUC Mini PC with Ubuntu 16.04 that contained an Intel
Core i7-7567U quad-core at 3.50Ghz processor, 16GB DDR4 and 512GB SSD.

Statistical analysis

Each one of the tests described in table 1 was executed 10 times to collect the samples for the
statistical analysis. Tests 1 and 2 were for purposes of comparing the replicated database with the
normal database (QGIS Shapefile imported), so 10 samples were collected from the replicated
database and other 10 samples from the normal database. The tests 3, 4, 5 and 6 were just
applied for descriptive analysis of the time elapsed during the executing a “refresh materialized
view” operation; these tests were carried out only in the hybrid approach PostgreSQL database.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202148

Table 1. Test cases description.

Test # Query Description Test samples (thread
iterations)

1 Select * from Multipolygon
table/view (Both DB’s)

Performance comparation of both related
approaches with the operation “Select
all properties” and the geometry from
a MultiPolygon table/view. The shape

involved was “Cobertura forestal 2005”,
with 21616 records.

2000

2 Select * from Points within
a

Polygon (Both DB’s)

Performance comparation of both
relational approaches with the operation
“Select all properties” and the geometry
of the points contained within a polygon.

The shape involved were “Bancos (Point)”
and “Cantones de la Región Huetar Norte
(MultiPolygon)”. The query resulted in a

total of 47 records.

2000

3 Refresh combined
geometries materialized

view (Hybrid approach
DB)

Time measure executing the operation:
“Refresh materialized view that

contains a set of different geometries”
(GeomCollection). The shape involved
was taken from an external provider

and was unavailable because of private
concerns. The view had 34 records of

MultiPolygon and Polygon features.

100

4 Refresh MultiLineString

Geometries materialized

view (Hybrid approach
DB)

Time measure executing the operation:
“Refresh MultiLineString materialized
view.” The shape involved was “Ríos

Región Huetar Norte, Costa Rica”. The
view had 4150 records.

100

5 Refresh Point geometries

Materialized view (Hybrid

Approach DB)

Time measure executing the operation:
“Refresh Point materialized view.” The
shape involved was “Poblados Región

Huetar Norte, Costa Rica”. The view had
658 records.

100

6 Refresh MultiPolygon
geometries materialized

view (Hybrid approach
DB)

Time measure executing the operation:
“Refresh MultiPolygon materialized view.”

The shape involved was “Poblados
Región Huetar Norte, Costa Rica”. The

view had 5366 records.

100

For the tests 1 and 2, the quantitative variable response time was evaluated with a
normality test of each database samples using the Anderson-Darling statistical tests
[29]. Both database samples for each test case were also evaluated using the Levene
test for variance [30]; the results were homogeneity of variances. It was verified that the
samples were independent with the Fisher exact test [31], which served as input for the
performance of the combined analysis of variance (ANOVA) [32]. Each test case was
carried out with a significance threshold of = 0,05.

Results and discussion

Hybrid storage engine set up

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 49

The implementation of this approach resulted in the setup of a hybrid storage engine infrastructure
that maintained replication of the data operations from MongoDB in a PostgreSQL database
designed for structuring and facilitating handling of the geographic data mapped by ToroDB
Stampede service, making both databases suitable for direct geographic data management and
enabling flexibility to choose where a geospatial operation should be carried out. See figure 5
for workflow overview.

Figure 5. Infrastructure process workflow.

The environment was tested with a storage engine that contained a set of 52 geographic
shapes, imported separately on 2 different MongoDB databases. Each shape was imported as
a collection to MongoDB, so the final distribution of shapes comprised 46 collections for the first
database and other 6 collections for the second one. Also, these collections were distributed in
4 types of geometry (Point, MultiPolygon, MultiLineString and Polygon).

When replicated in PostgreSQL, the first database collections structure generated a total of
264 tables; then these tables were combined to form the materialized views, creating the 46
views (one per each collection). The synchronization process between tables and views was
done by binding an event trigger to each generated table, for insertion, update, and deletion of
events, giving a total of 264 triggers in this database. The process was the same for the second
database, but in this case the 6 shapes imported on MongoDB, replicated, generated 30 tables
on the PostgreSQL side, with a result of 6 materialized views and 30 triggers. The total size of
the databases in MongoDB was 205,57 MB, for the first, and 10,49 MB, for the second one. The
configuration was filtering both MongoDB databases into one PostgreSQL database, separating
through schemes on PostgreSQL. This PostgreSQL database before all replication processes
had a size of 3028 MB. Note that this included the ToroDB metadata schemas, the functions
needed to create views, triggers and other miscellaneous purposes, the two schemas (one per
MongoDB database) with their generated tables and materialized views.

Test results

First test case (select * from MultiPolygon table/view)

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202150

The normality test applied to the hybrid database samples gave a p-value of 0,7477, and to the
other database samples, gave a p-value of 0,5467, suggesting that both data samples were
normal. The Levene’s test for homogeneity of variance evaluated in both databases samples
gave a p-value of 0,1356, thus proving that the data were homogeneous. The p-value with
the Fisher test was of 0,226, which meant that the samples were independent. In addition, the
results of the Anova test are shown in table 2. This test showed that the response time in one
database differed significantly from the other. The mean time and the standard deviation from
each database samples are shown in table 3.

Table 2. Anova results for test case #1.

DF
Sum

square
Mean
square F Pr(>F)

1 74,50 74,5 380,7
1,48e-

13

Table 3. Statistics from both databases samples on test #1.

Database Mean Standard deviation
Hybrid 180,496 0,56

Normal (QGIS Shapefile im-
ported) 176,636 0,26

Second test case (select * from Points within a Polygon)

The same method used in the first test case was carried out here; this time, the normality test
applied to the hybrid database samples gave a p-value of 0,2625, and to the normal database
samples, gave a p-value of 0,3034. Since these values were greater than the level of significance,
the data were considered normal. The Levene’s test gave a p-value of 0,1008, so the data were
homogeneous. The samples were independent, because the result of the p-value for the Fisher
accuracy test was 0,4737. The results of the Anova test are shown in table 4; they evidenced that
there was a significant difference in the response time between both databases. The statistics
(mean time, standard deviation) are shown in table 5.

As shown in tables 3 and 5, the normal database is the optimal, as it was proven in both tests
cases. The data were less dispersed from the mean on this database, because of a minor
standard deviation, but the hybrid approach showed the advantage of a MongoDB instance, that
could fill the needs of performance. Future work could be made to enhance the load requests
of the environment, giving chance to distribute queries execution between both MongoDB and
PostgreSQL databases.

Table 4. Anova results for test case #2.

DF
Sum

square
Mean
square F Pr(>F)

1 4,297 4,297 234,6 9,07e-12

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 51

Table 5. Statistics from both databases samples on test #2.

Database Mean Standard deviation
Hybrid 19,142 0,1726

Normal (QGIS Shapefile im-
ported) 18,215 0,0824

Refresh materialized view test cases
The descriptive statistics related to the next four test cases (refresh materialized views
operations) are shown to reflect the mean, median, and standard deviation of the time taken to
do this operation on the target geometries views. Refer to table 1 for more information.
Figures 6, 7, 8, and 9 show that the refreshing operations time increased as the amount data
contained in the views increased; this fact has to be taken into consideration if prompt and
consistent availability of data is required.

Figure 6. Statistics from test case #3.

Figure 7. Statistics from test case #4.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202152

Figure 8. Statistics from test case #5.

Figure 9. Statistics from test case #6.

Conclusions
A hybrid database was implemented with MongoDB and PostgreSQL managers; the ToroDB
tool performed the replication of MongoDB to PostgreSQL. To test its operation, 52 layers of
geographic data were imported into 2 databases; the result were 52 collections in MongoDB
and 264 tables in PostgreSQL. In addition, 52 views were created to facilitate the process of
obtaining data from the layers. 2 queries were also executed to compare the response time
of the replicated database with a normal database and 4 queries to perform the descriptive
analysis of the time spent in an update operation of a materialized view.
With the execution of queries 1 and 2, it was possible to determine that the normal database in
PostgreSQL had a shorter response time than PostgreSQL in the hybrid database. In addition,
with the execution of queries 3, 4, 5 and 6, it could be observed that according to the type of
geometry, the update response time increased; this was longer in the cases of multi-polygons.
Also, for a future work, it could be helpful to define how often a view needs to be refreshed, by
analyzing records from the amount of modifications in a job update on the ’mat view updates’
helper table showed on figure 3, and taking in count the response time, it would be possible to
make the decision to increase or decrease the scheduled job lapse of execution, lightening or
adjusting the load of the database engine.

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 2021 53

The flexibility allowed here could be useful when building a geoservice to fetch data or compute
any other spatial operation, knowing that MongoDB performs better at simple operations (read,
insert) or common spatial operations like line intersection and point containment [5]. These types
of request can be served from MongoDB directly, while complex operations like spatial joins with
filtering or geometry subdivisions can be addressed from the PostgreSQL side.
Since solutions requirements tend to change, having a hybrid approach can facilitate the
migration from one storage engine to the other as needs vary, so if the system demands scalability
as the amount of data or users grows and grows, MongoDB could serve well for this purpose.
On the other hand, PostgreSQL approach can be suitable if there is a need of compatibility with
other tools or business intelligence solutions, also if the geospatial data management requires
complex operations that are not supported by the non-relational side.

References
[1] S. Deogawanka, «Empowering GIS with Big Data,» 2014. [En línea]. Available: https://www.gislounge.com/

empowering-gis-big-data/.
[2] R. Cattell, «Scalable SQL and NoSQL data stores,» Acm Sigmod Record, vol. 39, nº 4, pp. 12-27, December

2010.
[3] M. López, S. Couturier, and J. López, “Integration of NoSQL Databases for Analyzing Spatial Information in

Geographic Information System,” Computational Intelligence and Communication Networks (CICN), 2016 8th
International Conference on, pp. 351-355, December 2016.

[4] M. A. Colorado Pérez, «NoSQL: ¿es necesario ahora?,» Tecnología Investigación y Academia, vol. 5, nº 2, pp.
174-179, 2017.

[5] E. Baralis, A. Dalla Valle, P. R. C. Garza, and F. Scullino, “SQL versus NoSQL databases for geospatial appli-
cations,” in 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 2017.

[6] G. Ongo and G. Putra Kusuma, “Hybrid Database System of ; Gede Putra KusumaMySQL and MongoDB in
Web Application Development,” in 2018 International Conference on Information Management and Technology
(ICIMTech), Jakarta, 2018.

[7] S. Goyal, P. P. Srivastava, and A. Kumar, “An overview of hybrid databases,” in Green Computing and Internet
of Things (ICGCIoT), 2015 International Conference, Noida, 2015.

[8] E. Şafak, A. Furkan, and T. Erol, “Hybrid Database Design Combination of Blockchain And Central Database,”
in 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara,
Turquía, 2019.

[9] H. R. Vyawahare, P. P. Karde, and V. M. Thakare, “Hybrid Database Model For Efficient Performance,”
Procedia Computer Science, vol. 152, pp. 172-178, 2019.

[10] Z. Pang, S. Wu, H. Huang, Z. Hong, and Y. Xie, “AQUA+: Query Optimization for Hybrid Database-MapReduce
System. In (pp. 199-206). IEEE.,” in 2019 IEEE International Conference on Big Knowledge (ICBK), Beijing,
China, 2019.

[11] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago between row-stores and column-stores for hybrid
workloads,” in 2016 International Conference on Management of Data, 2016.

[12] A. P. Costa and J. Oliveira, “Design and modeling of a hybrid database schema: transactional and analytical.,”
in 17th Conference of the Portuguese Chapter of the Association of Information Systems (CAPSI), Guimarães,
Portugal, 2017.

[13] I. Zečević and P. Bjeljac, “Model driven development of hybrid databases,” in 7th International Conference on
Information Society and Technology ICIST, 2017.

[14] U. Goswami, R. Singh, and V. Singla, “Implementing hybrid data storage with hybrid search,” in Proceedings
of the Third International Conference on Advanced Informatics for Computing Research, 2019.

[15] C. Wu, Q. Zhu, Y. Zhang, Z. Du, X. Ye, H. Qin, and Y. Zhou, “A NOSQL–SQL hybrid organization and mana-
gement approach for real-time geospatial data: A case study of public security video surveillance,” ISPRS
International Journal of Geo-Information, vol. 6, no. 1, p. 21, 2017.

[16] The PostgreSQL Global Development Group, “PostgreSQL 10.3 Released!” The World’s Most Advanced Open
Source Database,” [Online]. Available: https://www.postgresql.org/. [Accessed 7 march 2018].

Tecnología en Marcha,
Vol. 34, N.° 1, Enero-Marzo 202154

[17] Developers, PostGIS, “PostGIS — Spatial and Geographic Objects for PostgreSQL,” [Online]. Available:
https://postgis.net/. [Accessed 9 march 2018].

[18] S. Agarwal and K. S. Rajan, “Performance analysis of MongoDB versus PostGIS/PostGreSQL databases for
line intersection and point containment spatial queries,” Spatial Information Research, vol. 24, no. 6, pp. 671-
677, 2016.

[19] NoSQL, “NoSQL,” [Online]. Available: http://nosql-database.org. [Accessed 14 march 2018].
[20] geoserver.org, Geoserver, 2014.
[21] X. Liu, L. Hao, and W. Yang, “BiGeo: A Foundational PaaS Framework for Efficient Storage, Visualization,

Management, Analysis, Service, and Migration of Geospatial Big Data—A Case Study of Sichuan Province,
China,” ISPRS International Journal of Geo-Information, vol. 8, no. 10, p. 449, 2019.

[22] Z. Lv, X. Li, H. Lv, and W. Xiu, “BIM Big Data Storage in WebVRGIS,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 4, pp. 2566 - 2573, 2020.

[23] B. Shangguan, P. Yue, Z. Wu, and L. Jiang, “Big spatial data processing with Apache Spark,” in 2017 6th
International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 2017.

[24] I. Simonis, «Geospatial Big Data Processing in Hybrid Cloud Environments,» de IGARSS 2018-2018 IEEE
International Geoscience and Remote Sensing Symposium, Valencia, España, 2018.

[25] Apache Software Foundation, “Apache JMeter,” [Online]. Available: http://jmeter.apache.org/. [Accessed 5
december 2017].

[26] MongoDB, “The MongoDB 3.4 Manual,” [Online]. Available: https://docs.mongodb.com/v3.4/. [Accessed 6
december 2017].

[27] J. M. Cavero Barca, B. V. Sánchez, and P. C. García De Marina, “Evaluation of an Implementation of Cross-Row
Constraints Using Materialized Views,” ACM SIGMOD Record, vol. 48, no. 3, pp. 23-28, 2019.

[28] 8Kdata, “ToroDB,” 2016. [Online]. Available: https://www.8kdata.com/torodb. [Accessed 19 april 2016].
[29] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal of the American statistical association,

vol. 49, no. 268, pp. 765-769., 1954.
[30] J. L. Gastwirth, Y. R. Gel, and W. Miao, “The Impact of Levene’s Test of Equality of Variances,” Statistical

Theory and Practice Statistical Science, vol. 24, no. 3, pp. 343-360, 2009.
[31] M. Raymond and F. Rousset, “An exact test for population differentiation,” Evolution, vol. 49, no. 6, pp. 1280-

1283, 1995.
[32] M. Terrádez and A. A. Juan, “Análisis de la varianza (ANOVA),” 2003.

