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Abstract
The design and implementation of services to handle geospatial data involves thinking about 
storage engine performance and optimization for the desired use. NoSQL and relational 
databases bring their own advantages; therefore, it is necessary to choose one of these options 
according to the requirements of the solution. These requirements can change, or  some 
operations may be performed in a more efficient way on another database engine, so using 
just one engine means being tied to its features and work model. This paper presents a hybrid 
approach (NoSQL-SQL) to store geospatial data on MongoDB, which are replicated and mapped 
on a PostgreSQL database, using an open source tool called ToroDB Stampede; solutions then 
can take advantage from either NoSQL or SQL features, to satisfy most of the requirements 
associated to the storage engine performance. A descriptive analysis to explain the workflow of 
the replication and synchronization in both engines precedes the quantitative analysis by which 
it was possible to determine that a normal database in PostgreSQL has a shorter response 
time than to perform the query in PostgreSQL with the hybrid database. In addition, the type of 
geometry increases the update response time of a materialized view.
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Resumen
El diseño e implementación de servicios para el manejo de datos geoespaciales implica pensar 
en el rendimiento del motor de almacenamiento y su optimización para cada uso deseado. Las 
bases de datos relacionales y no relacionales aportan sus propias funcionalidades, por lo tanto, 
es necesario elegir una de estas opciones de acuerdo con los requisitos de la solución. Estos 
requisitos pueden cambiar o tal vez algunas operaciones puedan realizarse de manera más 
eficiente en otro motor de base de datos, por lo que usar solo un motor significa estar vinculado a 
sus características y modelo de trabajo. Este artículo presenta un enfoque híbrido (NoSQL-SQL) 
para almacenar datos geoespaciales en MongoDB, estos datos son replicados y mapeados en 
una base de datos PostgreSQL, utilizando una herramienta de código abierto llamada ToroDB 
Stampede; las soluciones pueden aprovechar las funciones NoSQL o SQL para satisfacer la 
mayoría de los requisitos asociados con el rendimiento del motor de almacenamiento. Aquí se 
presenta un análisis descriptivo para explicar el flujo de trabajo de la replicación y sincronización 
en ambos motores; además, el análisis cuantitativo, mediante el cual se logró determinar que 
una base de datos normal en PostgreSQL tiene un tiempo de respuesta menor que realizar 
la consulta en PostgreSQL con la base de datos híbrida; asimismo, que el tipo de geometría 
incrementa el tiempo de respuesta de actualización de una vista materializada.

Introduction
Finding the proper database for a solution can be vital when talking about performance or any 
other specific requirement. The set of database engines that support geographic data is limited 
on both relational and non-relational paradigms, so every key aspect is important when deciding 
between multiple options: “… the success of geospatial application in any project depends upon 
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the selection, collection, sorting and end-usage of data” [1]. Therefore, the database engine 
features are an important aspect when deciding which one to use in order to satisfy the data 
management requirements.

In general, NoSQL databases  in the non-relational databases paradigm are effective 
when handling huge amounts of data due to their ability to scale horizontally, the speed 
of simple operations, the facility to replicate and distribute data between several servers, 
and the fact of not being tied to a rigid defined structure, which gives them flexibility, 
among other aspects [2]. In the last years, these databases have been growing with 
support on geospatial data handling [3], implementing features such as geographic 
indexing and some usual spatial operations, also increasing compatibility with external 
geographic tools such as GeoServer.
On the other hand, relational databases are efficient when handling large amounts of data 
that have a fixed structure and guarantee ACID (atomicity, consistency, isolation, durability) 
properties in transactions [4]. Some of them also have better geospatial support than most 
NoSQL engines, providing more complex spatial operations and indexes; they are more easily 
compatible with other geospatial tools like Mapserver and QGIS [5].
Knowing the main features of both paradigms could help when making a decision to define a 
storage engine for a specific solution, but the requirements might change as this solution evolves 
in time, demanding more needs that the current paradigm could not support at his best. Being 
tied to just relational or non-relational paradigms means that solutions cannot take advantage 
from the features of the other one, so it would be helpful to achieve a hybrid approach to benefit 
from both paradigms’ features [4]. A hybrid database model is a database system that uses two 
or more different database models in a system [6] and functions as an abstraction layer that 
sits on top of databases, for example in the paradigms SQL and NoSQL [7]. Some benefits in 
using multiple database models in a system are flexibility [8], increased performance [9, 10, 11], 
logical distribution [12], their design conceived for the web [6, 13].
Actually, there are some approaches that integrate the SQL and NoSQL paradigms in a hybrid 
database [6, 9, 14, 15]. However, there are very few papers proposing hybrid databases that 
work with PostgreSQL and MongoDB. The properties of these databases make them stand out 
in each of their respective paradigms. PostgreSQL was one of the first databases to address 
spatial issues [16]. PostgreSQL’s extension, PostGIS [17], is highly optimized for spatial queries 
[18], and its large quantity of spatial functions make it very relevant. Meanwhile, there are 
currently over 225 NoSQL databases [19]; in contrast MongoDB, to date, is the only document-
based NoSQL database that supports line intersection and point containment queries [18]. Also, 
both Database Management Systems (DBMS) are open code, and Geoserver (an open source 
server for sharing geospatial data) [20] is enabled to give them support, because in its version 
2.11.4 this tool includes a data connection and publication component from MongoDB.
Another trend in the storage of spatial data is the big data [21, 22, 23, 24]. However, this type 
of implementation requires very good computing conditions for data storage and processing. In 
addition, it is necessary to analyze the issue of costs of the different technologies.
The intention of this paper is to provide a descriptive analysis of an hybrid (NoSQL/SQL) storage 
engine’s setting up approach, supported by MongoDB and PostgreSQL engines, to serve as 
backend for any WebGIS implementation or other desired use. The approach is based on a 
MongoDB replica set, that is mapped and maintains a live mirror on a PostgreSQL database, 
with help of a tool called ToroDB Stampede; the restructuring of mapped data in PostgreSQL 
through materialized views to be used with PostGIS extension.
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An implementation example is explained in the discussion. In the example, 52 geographic 
shapes are stored in two different MongoDB databases and replicated on PostgreSQL; the 
results obtained are 294 tables, 52 materialized views and 294 triggers linked to each table. 
We also intend to analyze the performance characteristics of the relational side of the proposed 
environment against other PostgreSQL database with geographic shapes imported from QGIS 
on Shapefile format, by making a statistic from a set of test samples designed with Apache 
JMeter tool [25].
There are three test scenarios: the first consist on a performance comparation of both PostgreSQL 
databases with a “select *” operation from a multipolygon shape with 21 616 tuples; the second 
is another comparation with a “select Points within a Polygon” operation, where the query results 
in 47 records; the third scenario is to analyze the time taken to refresh the materialized views on 
the hybrid approach PostgreSQL database. The main results allowed to determine that a normal 
database in PostgreSQL has a shorter response time than performing the query in PostgreSQL 
with the hybrid database. The type of geometry also increases the update response time of a 
materialized view.

Methodology

This section is aimed to analyze the methodology followed for the implementation of the hybrid 
database (view figure 1). It was developed in six phases and lastly, the workflow of the proposed 
environment, starting with the environment configuration and the necessary tools.   The 
subsequent topic here was the initialization of the ToroDB service for data replication. The third 
aspect was importing the data into the MongoDB DBMS. Because the process of replicating 
MongoDB documents in PostgreSQL divides the structures into several tables, a series of 
materialized views were first generated to unify the data in a single table and facilitate the query 
process; the implementation of triggers to maintain synchronization of data in the materialized 
views, a topic addressed in phase 5. The final topic was the evaluation of the proposed hybrid 
database. This process was meant to serve as a guide for readers to configure hybrid databases 
for geospatial data integrating the NoSQL and SQL paradigms..

Figure 1. Methodology.
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Environment and tools overview

When talking about NoSQL and SQL main databases with geospatial support, MongoDB comes 
in front of the few engines that support geographic features. PostgreSQL with PostGIS extension 
is also one if not the most suitable solution when storing and handling geographic data on 
relational databases [18]. These two engines and the ToroDB Stampede service set the base of 
our hybrid storage engine approach.

ToroDB Stampede is a replication and mapping technology to maintain a live mirror of a MongoDB 
replica set in a SQL database; it uses replica set oplog to keep track of the modifications in 
MongoDB [18]. A replica set is a group of servers where each one runs a separate MongoDB 
instance and stores the copy of the same data with failover and automatic recovery of member 
nodes; this redundancy of data provides a level of fault tolerance against the loss of a single 
database server [26].

Since ToroDB Stampede maps and synchronize the data unidirectionally, all the maintenance 
operations must be carried out on the MongoDB replica set. No synchronization is made when 
doing maintenance operations from PostgreSQL to MongoDB. Stampede maps the JSON 
structure of a document on MongoDB into a relational schema on PostgreSQL, by taking every 
document’s depth level and creating a table with its simple attributes (string, integers, and other 
types of data), so any other object or array in the document is considered another depth level 
and will end as a SQL table with its associated properties and some other metadata columns 
[18]. See figure 2 for the mapping result of a GeoJSON Point feature data.

Considering this, a simple GeoJSON file imported on the MongoDB replica set could be 
decomposed in many SQL tables, depending on the geometry type (because of the geometry 
arrays hierarchy) or the complexity of the table’s properties. Therefore, all of these tables have 
to be recomposed in order to form a functional data structure that PostGIS can handle. The next 
section will clarify this aspect by analyzing the workflow of the proposed approach.

Initializing the ToroDB Stampede service

The Stampede service must be running before importing any document from MongoDB. The 
environment configuration involves initializing the replica set on MongoDB, defining PostgreSQL 
credentials to be used, and adjusting desired configuration on Stampede service. For detailed 
information about installing, configuring or any other related topic, refer to ToroDB Stampede 
official documentation [18].
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Figure 2. JSON format mapped to SQL schema.

Source: ToroDB Stampede documentation

Importing the geographic data

Geographic data is available in several formats. Since the data will be primarily stored on the 
MongoDB replica set, importing it into GeoJSON format is the best and only way to do it. But 
before importing the GeoJSON file, it has to be prepared in an optimal format for import. We 
chose to handle the GeoJSON file by leaving just the “features” array, so the whole file would 
begin as an array of feature objects; this would make MongoDB treat every array element as a 
document in MongoDB when importing [26], see figure 3.

Figure 3. JSON file required format to import.

Source: ToroDB Stampede documentation

The preparation of the file can be made with common text editors, or using some special tools 
for editing large text files. When the file was at the required format, we could import it on the 
MongoDB replica set by using the Mongoimport tool; but since we were using array notation, we 
had to explicitly set the –jsonArray flag when running the command, and that would import every 
array element as a document on the replica set [26].
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Structuring generated SQL tables

Once the data has been replicated on the PostgreSQL side, there may be a bunch of generated 
tables for a single document (view figure 2), as we mentioned before. Depth levels (objects or 
arrays) properties in the document will be stored in an extra SQL table on PostgreSQL; therefore, 
because of the nested array on geometries, different types of geometries will mean more or 
fewer geometry tables.

This leads to the need of a well defined structure to support the spatial data with PostGIS 
extension. Since the similar geometry types share a common structure, it is a good abstraction 
practice to define functions that help to recompose the features based on their geometry 
type, saving this composed structure in some desired schema [27]. Composed SQL structure 
of a replicated shape will consist on a materialized view that incorporates the identifier, the 
properties, and the final PostGIS geometry object. Materialized views are a more simple way 
to define views that can be updated periodically and store data in a table-like form; accessing 
them is often much faster than accessing the underlying tables directly or through a view [16].

ToroDB service maintains internal schemas on the PostgreSQL target database; it stores 
metadata about the relation of the MongoDB collections and PostgreSQL tables, document parts 
and their respective table [28]. Schema ToroDB could be helpful when defining the functions, as 
it provides better management of the mapped dataset. 

The query to create this materialized view needs to be defined by building a query text 
dynamically. The taken approach in our probe was to define a function that would receive the 
base table name (collection name), its origin schema, and the target schema where the view 
would be defined. This would make it easier to select sub-tables by appending the suffix to the 
base table name. PostGIS supports geometry definition from text with his ST GeomFromText 
function [17], so when building the composing functions, geometry query is correctly defined in 
a text variable, using aggregate functions to properly gather all the coordinates in an consistent 
and ordered way, considering all geometry’s singularities, such as inner rings on polygons and 
multiple geometry types on shapes.

Maintaining synchronization from MongoDB to PostgreSQL

ToroDB automatically keeps synchronization from MongoDB collection changes on the 
respective generated tables, but since we were not working directly with these tables but with 
the composed materialized views, changes on these tables needed to be reflected on the 
materialized views opportunely, according to the availability requirements.

The solution adopted on this approach consist on triggering insertion, update and deletion events 
on all the generated tables. Then, the trigger handler updates the helper table that describes the 
materialized views update logs by taking the updated table in the trigger and finding the name 
of the materialized view that it belongs to. The helper table is represented on figure 4.
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Figure 4. Helper table columns explained.

The trigger function gets the corresponding materialized view name, with help of ToroDB schema 
‘doc part’ table and then does an upsert operation on the helper table, so if the materialized view 
name is already inserted, it updates the ‘modifications’ column by incrementing it in one unit; 
then it updates the ‘trig update’ column with the current timestamp.
Lastly, with the helper table working, we can use a scheduled job to analyze it in order to 
determine if some materialized views need to be refreshed, with help of the job update column 
on the mentioned helper table. Doing this will avoid to refresh the unnecessary materialized 
views, saving time and computing cost.

Relational approaches analysis and tests
In this probe, we also developed a set of tests for comparing the performance of the PostgreSQL 
replicated database from this approach with another geographic database on PostgreSQL with 
tables generated from QGIS Shapefile imports. The shapes being tested are downloaded from 
IDEHN (Spatial Data Infrastructure of the Huetar Norte Region) platform, available at http://www.
idehn.tec.ac.cr/.
These tests were developed with the Apache JMeter software, an application designed to 
functional behavior tests and measure performance [25]. With this tool, it is easy to measure 
performance on databases operations connecting them to JDBC API. A total of six tests were 
carried out, which are described on table I.
The test suite was executed with an Intel NUC Mini PC with Ubuntu 16.04 that contained an Intel 
Core i7-7567U quad-core at 3.50Ghz processor, 16GB DDR4 and 512GB SSD. 

Statistical analysis

Each one of the tests described in table 1 was executed 10 times to collect the samples for the 
statistical analysis. Tests 1 and 2 were for purposes of comparing the replicated database with the 
normal database (QGIS Shapefile imported), so 10 samples were collected from the replicated 
database and other 10 samples from the normal database. The tests 3, 4, 5 and 6 were just 
applied for descriptive analysis of the time elapsed during the executing a “refresh materialized 
view” operation; these tests were carried out only in the hybrid approach PostgreSQL database.
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Table 1. Test cases description.

Test # Query Description Test samples (thread 
iterations)

1 Select * from Multipolygon 
table/view (Both DB’s)

Performance comparation of both related 
approaches with the operation “Select 
all properties” and the geometry from 
a MultiPolygon table/view. The shape 

involved was “Cobertura forestal 2005”, 
with 21616 records.

2000

2 Select * from Points within 
a

Polygon (Both DB’s)

Performance comparation of both 
relational approaches with the operation 
“Select all properties” and the geometry 
of the points contained within a polygon. 

The shape involved were “Bancos (Point)” 
and “Cantones de la Región Huetar Norte 
(MultiPolygon)”. The query resulted in a 

total of 47 records.

2000

3 Refresh combined 
geometries materialized

view (Hybrid approach 
DB)

Time measure executing the operation: 
“Refresh materialized view that 

contains a set of different geometries” 
(GeomCollection). The shape involved 
was taken from an external provider 

and was unavailable because of private 
concerns. The view had 34 records of 

MultiPolygon and Polygon features.

100

4 Refresh MultiLineString 

Geometries materialized

view (Hybrid approach 
DB)

Time measure executing the operation: 
“Refresh MultiLineString materialized 
view.” The shape involved was “Ríos 

Región Huetar Norte, Costa Rica”. The 
view had 4150 records.

100

5 Refresh Point geometries

Materialized view (Hybrid

Approach DB)

Time measure executing the operation: 
“Refresh Point materialized view.” The 
shape involved was “Poblados Región 

Huetar Norte, Costa Rica”. The view had 
658 records.

100

6 Refresh MultiPolygon 
geometries materialized

view (Hybrid approach 
DB)

Time measure executing the operation: 
“Refresh MultiPolygon materialized view.” 

The shape involved was “Poblados 
Región Huetar Norte, Costa Rica”. The 

view had 5366 records.

100

For the tests 1 and 2, the quantitative variable response time was evaluated with a 
normality test of each database samples using the Anderson-Darling statistical tests 
[29]. Both database samples for each test case were also evaluated using the Levene 
test for variance [30]; the results were homogeneity of variances. It was verified that the 
samples were independent with the Fisher exact test [31], which served as input for the 
performance of the combined analysis of variance (ANOVA) [32]. Each test case was 
carried out with a significance threshold of = 0,05.

Results and discussion

Hybrid storage engine set up
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The implementation of this approach resulted in the setup of a hybrid storage engine infrastructure 
that maintained replication of the data operations from MongoDB in a PostgreSQL database 
designed for structuring and facilitating handling of the geographic data mapped by ToroDB 
Stampede service, making both databases suitable for direct geographic data management and 
enabling flexibility to choose where a geospatial operation should be carried out. See figure 5 
for workflow overview.

Figure 5. Infrastructure process workflow.

The environment was tested with a storage engine that contained a set of 52 geographic 
shapes, imported separately on 2 different MongoDB databases. Each shape was imported as 
a collection to MongoDB, so the final distribution of shapes comprised 46 collections for the first 
database and other 6 collections for the second one. Also, these collections were distributed in 
4 types of geometry (Point, MultiPolygon, MultiLineString and Polygon).

When replicated in PostgreSQL, the first database collections structure generated a total of 
264 tables; then these tables were combined to form the materialized views, creating the 46 
views (one per each collection). The synchronization process between tables and views was 
done by binding an event trigger to each generated table, for insertion, update, and deletion of 
events, giving a total of 264 triggers in this database. The process was the same for the second 
database, but in this case the 6 shapes imported on MongoDB, replicated, generated 30 tables 
on the PostgreSQL side, with a result of 6 materialized views and 30 triggers. The total size of 
the databases in MongoDB was 205,57 MB, for the first, and 10,49 MB, for the second one. The 
configuration was filtering both MongoDB databases into one PostgreSQL database, separating 
through schemes on PostgreSQL. This PostgreSQL database before all replication processes 
had a size of 3028 MB. Note that this included the ToroDB metadata schemas, the functions 
needed to create views, triggers and other miscellaneous purposes, the two schemas (one per 
MongoDB database) with their generated tables and materialized views.

Test results

First test case (select * from MultiPolygon table/view)
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The normality test applied to the hybrid database samples gave a p-value of 0,7477, and to the 
other database samples, gave a p-value of 0,5467, suggesting that both data samples were 
normal. The Levene’s test for homogeneity of variance evaluated in both databases samples 
gave a p-value of 0,1356, thus proving that the data were homogeneous. The p-value with 
the Fisher test was of 0,226, which meant that the samples were independent. In addition, the 
results of the Anova test are shown in table 2. This test showed that the response time in one 
database differed significantly from the other. The mean time and the standard deviation from 
each database samples are shown in table 3.

Table 2. Anova results for test case #1.

DF
Sum 

square
Mean 
square F Pr(>F)

1 74,50 74,5 380,7
1,48e-

13

Table 3. Statistics from both databases samples on test #1.

Database Mean Standard deviation
Hybrid 180,496 0,56

Normal (QGIS Shapefile im-
ported) 176,636 0,26

Second test case (select * from Points within a Polygon)

The same method used in the first test case was carried out here; this time, the normality test 
applied to the hybrid database samples gave a p-value of 0,2625, and to the normal database 
samples, gave a p-value of 0,3034. Since these values were greater than the level of significance, 
the data were considered normal. The Levene’s test gave a p-value of 0,1008, so the data were 
homogeneous. The samples were independent, because the result of the p-value for the Fisher 
accuracy test was 0,4737. The results of the Anova test are shown in table 4; they evidenced that 
there was a significant difference in the response time between both databases. The statistics 
(mean time, standard deviation) are shown in table 5.

As shown in tables 3 and 5, the normal database is the optimal, as it was proven in both tests 
cases. The data were less dispersed from the mean on this database, because of a minor 
standard deviation, but the hybrid approach showed the advantage of a MongoDB instance, that 
could fill the needs of performance. Future work could be made to enhance the load requests 
of the environment, giving chance to distribute queries execution between both MongoDB and 
PostgreSQL databases.

Table 4. Anova results for test case #2. 

DF
Sum 

square
Mean 
square F Pr(>F)

1 4,297 4,297 234,6 9,07e-12
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Table 5. Statistics from both databases samples on test #2.

Database Mean Standard deviation
Hybrid 19,142 0,1726

Normal (QGIS Shapefile im-
ported) 18,215 0,0824

Refresh materialized view test cases
The descriptive statistics related to the next four test cases (refresh materialized views 
operations) are shown to reflect the mean, median, and standard deviation of the time taken to 
do this operation on the target geometries views. Refer to table 1 for more information.
Figures 6, 7, 8, and 9 show that the refreshing operations time increased as the amount data 
contained in the views increased; this fact has to be taken into consideration if prompt and 
consistent availability of data is required.

Figure 6. Statistics from test case #3.

Figure 7. Statistics from test case #4.
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Figure 8. Statistics from test case #5.

Figure 9. Statistics from test case #6.

Conclusions
A hybrid database was implemented with MongoDB and PostgreSQL managers; the ToroDB 
tool performed the replication of MongoDB to PostgreSQL. To test its operation, 52 layers of 
geographic data were imported into 2 databases; the result were 52 collections in MongoDB 
and 264 tables in PostgreSQL. In addition, 52 views were created to facilitate the process of 
obtaining data from the layers. 2 queries were also executed to compare the response time 
of the replicated database with a normal database and 4 queries to perform the descriptive 
analysis of the time spent in an update operation of a materialized view.
With the execution of queries 1 and 2, it was possible to determine that the normal database in 
PostgreSQL had a shorter response time than PostgreSQL in the hybrid database. In addition, 
with the execution of queries 3, 4, 5 and 6, it could be observed that according to the type of 
geometry, the update response time increased; this was longer in the cases of multi-polygons. 
Also, for a future work, it could be helpful to define how often a view needs to be refreshed, by 
analyzing records from the amount of modifications in a job update on the ’mat view updates’ 
helper table showed on figure 3, and taking in count the response time, it would be possible to 
make the decision to increase or decrease the scheduled job lapse of execution, lightening or 
adjusting the load of the database engine.



Tecnología en Marcha, 
Vol. 34, N.° 1, Enero-Marzo 2021 53

The flexibility allowed here could be useful when building a geoservice to fetch data or compute 
any other spatial operation, knowing that MongoDB performs better at simple operations (read, 
insert) or common spatial operations like line intersection and point containment [5]. These types 
of request can be served from MongoDB directly, while complex operations like spatial joins with 
filtering or geometry subdivisions can be addressed from the PostgreSQL side.
Since solutions requirements tend to change, having a hybrid approach can facilitate the 
migration from one storage engine to the other as needs vary, so if the system demands scalability 
as the amount of data or users grows and grows, MongoDB could serve well for this purpose. 
On the other hand, PostgreSQL approach can be suitable if there is a need of compatibility with 
other tools or business intelligence solutions, also if the geospatial data management requires 
complex operations that are not supported by the non-relational side.
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