
Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202062

A Communication Protocol
Design aimed at a Multi-
Agent System Framework for
Miniaturized Satellite Systems
Diseño de un protocolo de comunicación para la
plataforma de desarrollo software basado en agentes
utilizados en sistemas satelitales miniaturizados1
Samantha Interiano-Valverde2, Davide Scazzoli3,
Carmen Chan- Zheng4, Johan Carvajal-Godínez5, Maurizio Magarini6

Fecha de recepción: 8 de agosto de 2019
Fecha de aprobación: 27 de noviembre de 2019

Interiano-Valverde, S; Scazzoli, D; Chang-Zheng, C; Car-
vajal-Godínez, J; Magarini, M. A Communication Protocol
Design aimed at a Multi-Agent System Framework for Minia-
turized Satellite Systems. Tecnología en Marcha. Vol. 33-4.
Octubre-Diciembre 2020. Pág 62-76.

 https://doi.org/10.18845/tm.v33i4.4505

1 Work based on the Thesis of [13]
2 Politecnico di Milano, Milano, Italia. Correo electrónico: samantha.interiano@mail.polimi.it.
3 Politecnico di Milano, Milano, Italia. Correo electrónico: davide.scazzoli@polimi.it.
4 Universidad de Costa Rica. Puntarenas, Costa Rica. Correo electrónico:

carmen.chan@ucr.ac.cr.
5 Space Systems Laboratory. Tecnológico de Costa Rica, Cartago, Costa Rica. Correo

electrónico: johcarvajal@tec.ac.cr.
6 Politecnico di Milano. Milano, Italia. Correo electrónico: maurizzio.magarini@polimi.it.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 63

Keywords
MAES framework; embedded systems; real-time; agent; inter-platform; I2C.

Abstract
In recent years space-science and exploration have become more accessible due to the
popularization of the concept of CubeSats. CubeSats are being used as a result of their
convenient size and weight requirements, allowing for target missions to be designed, developed,
and launched with a significant reduction of costs compared to traditional space missions.
Furthermore, the development of target missions has become more intricate, forcing a shift in
the traditional notion of using a centralized control architecture to a distributed architecture.
A distributed architecture tackles the problem of a possible functionality loss over the control
unit. This paper describes the extension of capabilities of the Multi-Agent Systems Framework
for Embedded Systems (MAES). This extension provides MAES framework with the ability to
perform inter-platform communication, so now the control unit architecture can be broadened
allowing agents from different platforms to interact and perform cooperatively different routines
designed by the developer, so it is not limited to the capabilities of just one platform. Moreover,
this paper shows the results of the experimental setup showing the precision of inter-platform
message exchange and the relationship between the delay of the exchange of inter-platform
messages and the number of agents that are simultaneously running on each platform.

Palabras clave
Marco MAES; sistemas embebidos; tiempo real; agente; interplataforma; I2C.

Resumen
En los últimos años, la ciencia espacial y la exploración se han vuelto más accesibles debido
a la popularización del concepto de CubeSats. Los CubeSats se está utilizando debido a
sus convenientes requisitos de tamaño y peso, lo que permite que misiones especificas se
diseñen, desarrollen y lancen con una reducción significativa de los costos en comparación
con las misiones espaciales tradicionales. Además, el desarrollo de misiones específicas se
ha vuelto más complejo, forzando un cambio en la noción tradicional de usar una arquitectura
de control centralizada para una arquitectura distribuida. Una arquitectura distribuida resuelve
el problema de una posible pérdida de funcionalidad en la unidad de control. Este documento
describe la extensión de las capacidades del framework de sistemas multiagentes para
sistemas embebidos (MAES). Esta extensión proporciona al framework MAES la capacidad de
realizar comunicaciones entre plataformas, de modo que ahora la arquitectura de la unidad
de control puede ampliarse, permitiendo a los agentes de diferentes plataformas interactuar y
realizar de forma cooperativa diferentes rutinas diseñadas por el desarrollador, por lo que no
se está limitado a las capacidades de solo una plataforma. Asimismo, este documento muestra
los resultados de la configuración experimental que muestra la precisión del intercambio de
mensajes entre plataformas y la relación entre el retraso del intercambio de mensajes entre
plataformas y la cantidad de agentes que se ejecutan simultáneamente en cada plataforma.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202064

Introduction
Space science and exploration have become more accessible in recent years due to the
popularization of the concept of CubeSats. Twenty years ago, CubeSats were developed as
a concept model that intended to involve universities to participate in space missions [1]. It
rapidly caught the attention of researchers, space agencies, governments, and companies
because of the specifics on size and weight requirements meant that targeted missions could
be designed, developed and launched with a significant reduction of costs. The development
of more intricate target missions has forced a shift in the traditional notion of using a centralized
control architecture to an architecture that is distributed since once the CubeSat is launched
there is no way of providing maintenance to it. Hence, if the control unit is affected, then the
entire system may lose functionality. One of the ways the space industry has been doing this
shift is using multi-agent systems.
A Multi-Agent System (MAS) can be defined as a dynamic distributed system that envelops
autonomous agents/nodes, who cohabit inside a society where they can work individually on a
specific task, or they can interact with others and work together towards achieving a common
goal [2]. The architecture of MAS is modular, making it scalable, therefore allowing agents to be
linearly aggregated. The system as a whole is robust since the architecture allows the system to
tolerate failures of one or more agents, as the responsibilities and control are shared between
the agents. [3]
According to Coulouris et al. [4], the advantages of adopting a distributed architecture are given
by the capacity of concurrency program executions, no need of centralized control, scalability,
and independent failure, meaning that if a component of the system fails the other ones can still
run independently, and they may never notice that another component has failed. As a result, the
Multi-Agent Systems Framework for Embedded Systems (MAES) was developed to provide the
developer with a tool to implement real-time MAS based applications in embedded environments.
This capability is something that the market was lacking, especially for the development of real-
time applications in the space industry using distributed architectures.
The design and implementation of the MAES framework were carried out by Chan-Zheng et al.
[5]. The development started as a result of the need in the science community to have a tool
that fills the gap between real-time operating systems and multi-agent systems used for satellite
applications. Since MAES is still in the initial stage of development, for it to be released and used
by developers in the design of future satellite applications the guidelines given by the Foundation
for Intelligent Physical Agents (FIPA) are used. FIPA is a foundation that advocates for the
standardization of distributed agent-based applications and services through collaboration with
international companies, universities, and the IEEE Computer Society [6] [7].
MAES framework conveniently reduces the time and effort of developers to implement a MAS
application because it already implements the services and the primitive communication
structure with the intra-platform agents for a highly constraint embedded platform. This paper
focuses on the description of the upgrade done to the MAES framework in order to allow for inter-
platform communication. Thus, the control unit architecture can be enhanced to allow agents
from different platforms to interact and perform cooperatively different routines designed by the
developer, so it is not limited to the capabilities of just one platform.
The current state of MAES framework development so far complies with some FIPA specifications,
which are the minimum requirements for intra-platform operation (see table 1).
One of the purposes of this work is to add more capabilities to MAES’s framework so it can allow
communication between an assortment of platforms, all running MAES in a given communication
topology.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 65

Table 1. Current minimum FIPA specifications implemented on MAES

FIPA component

Agent

Agent Platform

Agent Management Service

Message Transport Service (Intra-platform)

The outline of the paper is as follows. First the article describes the design of the inter-platform
design, extending on the communication protocol selection, message strategy selection,
and its implementation. Then is described the verification of the operation of inter-platform
communication as to observe the implementation’s operation. Finally, it draws the main
conclusions and discusses future work developments.

Inter-Platform Protocol Design
This Section presents the design choices for the communication protocol, following the FIPA
guidelines for Multi-Agent Systems, which addresses the question: “What is the most efficient
architecture that best manages the resources for communication applications in multi-platform
systems running MAES?”

Communication Protocol Selection.
The communication protocol chosen for the implementation of the inter-platform message
transport service of MAES is I2C (Inter-Integrated Circuit) because of its usage in previous
research related to Cubesats design for the communication between the on-board computer
(OBC) and peripheral devices [8] [9]. The small footprint and other advantages of I2C have
contributed to its popularity that, in turn, has driven most microcontroller manufacturers to
include I2C among the standard BUS interfaces provided [10].

Message Routing Strategy.
In order to extend the communication of agents and give them the ability to communicate
between agents outside its platform, the inter-platform messages shall act in compliance with
the FIPA specifications. FIPA specifications do not explicitly specify what protocol must be used
when inter-platform communication is intended. FIPA specifications mention only how the packet
must be composed in term of its contents.
In an abstract form, the message can be expressed in two parts: message envelope and
message payload. The message envelope comprises a collection of parameters expressed as a
key-value tuple (name/value pair). The envelope must contain at least the to-from, date, and acl
representation. The message payload embodies the encoded Agent Communication Language
(ACL) message. Therefore, this paper describes the design choices of a static approach.
The static approach begins with the assumption that the sender agent knows to whom it wants
to communicate with, much as in other types of communication systems, the recipient is always
known, the only thing that both approaches handle is how they deliver the messages. The
message packet is comprised by the header (Sender I2C address, Receiver I2C address, and
message type) and the payload (Sender AID, Receiver AID, message type and content).

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202066

Static Approach
The static approach works as follows. At start-up, each platform knows the other platforms’ ID,
which then correlates to their I2C addresses, so all platforms have the information of each other
before any message exchange is done. Afterward, when the sender agent sends a message to a
receiver agent, the local Message Transport System (MTS) has first to check if the receiver agent
is local. If it is, it proceeds as it is already implemented by MAES Framework on the contrary
when the receiver agent is not registered to the same platform as the sender agent the next step
is to search by the agents’ AID. The agent AID is a concatenation of the platform’s ID and its ID.
So, when the search is done in the table previously shared, the MTS takes from the agent AID,
the portion of the platform’s ID and determines the I2C address of the platform. That enables
the MTS to compose the data message’s header and the payload (Packet), which is sent to the
platform where the receiver agent is registered.
When the message is received at the destination platform, the MTS looks in the payload for the
receiver’s agent AID and confirms that the agent is registered to the Agent Management Service
(AMS). So, if the case occurs where the agent is de-registered (killed) from its AMS, the receiver
platform will send a NON-UNDERSTOOD message to the sender agent, and that packet is
discarded.
The static approach fits best into the CubeSat environment because the setting is contained
enough to consider it a small network. The advantage of using the static approach is that it
demands less CPU/Memory overhead for storing each foreign agent’s AID and corresponding
I2C address of the platform it belongs to and does not add processing time for the inquire of the
foreign agent’s location. Furthermore, there is no bandwidth overhead because updates are not
shared between the platforms, thus providing more control over the traffic that is routed.

Inter-platform Communication Implementation
The hardware that was used for the experimental set-up is the MSP432P401R SimpleLink
Microcontroller LaunchPad, which uses Texas Instruments proprietary real-time operating
system called TI RTOS SYS/BIOS. In such operating system applications are organized by a
collection of threads, meaning that each application’s function is encapsulated in a stream of
instructions that are executed by the processor. The real-time operating system supports four
different types of threads: Hardware interrupts (Hwi), Software interrupts (Swi), tasks, and the
idle thread. MAES Framework architecture is based on tasks, as each task have its stack, apart
from Hwi and Swi that share the same stack (system stack). This mechanism allows the task to
take over a resource, and it makes other tasks wait for the release of the resource (block). Tasks
are executed based on their priority level. There are 16 priority levels where level 0 is the lowest
priority, and 15 corresponds to the highest priority, while level -1 means that the task is inactive.
The priority level is defined by the developer; thus, it gives the developer the flexibility to decide
how the tasks are executed.
As discussed before, MAES’ framework architecture is based on tasks, meaning that each agent
is equivalent to a single task within the framework. Therefore, the agent that has the highest
priority is the one who is going to be running first and can request actions to another agent.
Each interaction between agents is done through the exchange of messages. TI-RTOS has a
set of modules that allow tasks to communicate with each other, which are: queues, events,
semaphores, and mailboxes. MAES Framework MTS is mapped to the usage of mailboxes; each
agent has its mailbox, so, for example, a sender agent can signal when a message is posted
to the receiver agent (notifies of an incoming message), for which the receiver agent’s mailbox
prepares to receive the data from the sender.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 67

Agent Platform and Agent message classes extension
The base version of the MAES Framework contains four main classes: Agent class, Agent
Message class, Agent Platform class, and Behaviour-related classes, as described by Chang-
Zheng [5]. Thus, in order to bring out the capabilities of inter-platform agent communication, this
section describes the extension of the Agent Message and Agent Platform classes, and it adds
the Communication class to the already existing MAES library.
The extension of the Agent Platform class includes the methods needed to add the Agent
Communication Channel (ACC). The ACC is the service on MAS who is in charge of determining
if the messages are local or they need to be encapsulated into the payload of the ACL message
to be delivered to a different platform (figure 1). The ACC is where the foreign messages arrive
at the platform and where they are de-capsulated to be forwarded to the receiver agent.

Figure 1. Block description of the communication method used for MAES inter-platform communication.

On MAES the ACC is mapped as the I2C Master, Slave, and Postman agents, see figure 2. These
new agents are all initialized like a regular agent when each method runs it creates its unique
task and handle (Agent_AID) and its corresponding mailbox and mailbox handle. Besides,
when the intent is to use the inter-platform communication, the developer must know that for this
case the agent priority allocation of MAES changes, which means is that the I2C Slave agent
now becomes the agent with the highest priority. As a result, the incoming messages from the
other platforms are addressed as soon as possible, since they are considered as an external
interruption that must take precedence over local message addressing. Then, the I2C Slave’s
“Postman,” who is the agent that oversees the unpacking of the packets received by the I2C
Slave, becomes the agent with the second-highest priority. Next, the I2C Master agent, who is
the agent that proceeds with the encapsulation of the message contents into the I2C Packet,
gets the third-highest priority as a result of the possible immediate need to send a response

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202068

to an external message that arrived from a foreign agent. Lastly, the AMS agent becomes the
agent with the fourth highest priority. The remaining local agents that are created follow the
already established priority description from the base MAES Framework, which is defined by the
developer.

Figure 2. Block description of the Agent Communication Channel

Regarding the Agent Message class, the extension takes advantage of the polymorphism of the
functions, which allows for a member function to act differently according to the type of object
that invokes it. This property is used for the send function (see figure 3), where depending on the
intended recipient, the message is addressed to either the local agent or to a foreign agent, the
distinction lies in how the receiver agent is called. That is an important distinction because when
an agent is registered to a platform and therefore becomes a member of the platform’s AMS, the
agent is given a unique name inside the platform it belongs. That is called the Agent_ID, and
it is the name by which the other local agents refer to when they choose to send a message to
it. Concerning the inter-platform communication, each agent has what can be called an “Alias”
by which agents from different platforms can refer to it. The agent’s “Alias” is an unsigned
16-bit integer (uint16_t), that concatenates the eight most significant bits (MSB), the number of
the Platform’s (uint8_t) identifier, and the eight least significant bits (LSB) the agent’s (uint8_t)
identifier. The agent identifier is a unique integer from 1 to 62 defined by the developer. This
range is a convention defined by the MAES framework, in which the maximum agents a platform
can host is 62.
Each Agent Alias represents the global name by which the agent is referred to inside the whole
MAES Framework. That means that even if the agent’s identifier is the same on more than one
platform, there will not be a conflict of Aliases because the identification of the platform ID is the
distinction between the Aliases. Also, it is not possible that inside a platform there is more than
one agent with the same agent identifier because during compilation an error will be prompted
to the user warning that the agent identifier is already being used.

Figure 3. Snippet of class Agent_Msg regarding the send function.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 69

Now, both send functions construct the ACL message with the message parameters: sender,
receiver, performative, and content and post the message to the mailbox of the intended
recipient. So, what happens when the intended recipient belongs to another platform? Which
mailbox does the message is posted? The answer is that the ACL message is posted into the
I2C Master’s mailbox, which is the agent that takes the recently posted ACL message (which is
now considered the payload) and adds the envelope that contains the parameters: to-from and
acl-message, which is described more in detail in the next subsection.

Agent Communication Channel Class
The Communication class encases the usage of the I2C protocol, where each platform can act as
an I2C Master when a local agent chooses to send a message to a foreign agent, or act as Slave
when an incoming message arrives with the destination of a local agent. The Master and Slave
each have their task (each of them is an individual agent) and consequently their stack allowing
for incoming and outgoing messages to be allocated in different queues. Therefore, there are no
conflicts on the utilization of the I2C channel, which means that the Master and Slave each use
one out of the four MSP432P401R Launchpad modules.
After a message about the intention of a local agent to communicate with a foreign agent is
posted in the I2C Master’s mailbox. The I2C Master agent receives the message and proceeds
with the encapsulation of the contents into the I2C Packet. The ACL message with the sender
Alias, receiver Alias, performative, and content are added to the payload structure of the packet.
Finally, the Platform receiver address and, Platform sender address are placed in the header
structure of the packet, as shown in figure 4.

Figure 4. I2C Packet encapsulation of the inter-platform message exchange

The I2C Master determines the Platform receiver address looking at the receiver Alias field and
correlates the MSB 8bits of the agent’s (uint16t) Alias with the table of I2C platform addresses
that are already registered at start-up. When the 8_bit I2C address is determined, it is placed in
the Platform receiver address field. The Platform sender address parameter is filled by copying
the local platform’s I2C address.
The I2C packet refers to a uint8 variable that encapsulates the header and the ACL message,
that is passed by value to the I2C Master driver API, where a parameter is a uint8 variable
previously mentioned. Other filled parameters are the 8_bit I2C receiver address, the packet size
and the intention of writing information to the I2C Slave of the receiver platform.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202070

 During the reception process, the I2C Slave agent receives the I2C packet and forwards it to the
“Postman,” who first checks the receiver Alias field and compares the 8 MSB with the platform’s
ID to determine that the message is intended for the said platform. Then, the 8 LSB of the receiver
Alias are compared to find the match. The “Postman” does an inquiry to the platform’s AMS using
the receiver Alias and asks for the Agent’s_AID. Once the “Postman” has the Agent’s_AID, it
proceeds to post the ACL message to the newfound local agent’s mailbox. After the local agent
receives the message, it proceeds with the instructions given by the performative and content of
the ACL message that was already defined by MAES intra-platform methods. In case there is no
correspondence between the platform address or the agent “Alias,” the “Postman” constructs an
I2C packet with a message reply to the sender Alias with the performative NOT_UNDERSTOOD.

Multi-Agent System Inter-Platform Communication Implementation and Testing
This section is devoted to the operating performance of the inter-platform communication. For
these experiments, three applications are used to show the verification of the inter-platform
communication protocol execution, the precision of the message round trip time and the relation
between the delay and the number of agents accessing simultaneously to the I2C bus.

Hardware Setup
The hardware setup used to perform measurements is described in what follows. The Launchpad
used is the Texas Instruments MSP432P401R SimpleLink Microcontroller LaunchPad, who
features 64KB RAM, 256KB Flash memory, a low power ARM 32-bit Cortex-M4F microcontroller
(MCU), up to 48 MHz system clock. Additionally, it has an onboard probe for programming and
debugging, two buttons and two LEDs for user interaction, backchannel UART through USB to
PC, lastly four I2C modules and up to eight SPI modules. [11]
In order to carry out the measurements to verify the behavior of the implementation, two
MSP432P401R Launchpads were used. They were connected between each other using the
pinout described in table 2 for the I2C Master and Slave connection. That is because of the need
to use two libraries (I2CMaster.h and I2CSlave.h) from Texas Instruments that run with the Real-
Time Operating System (RTOS). Here, the bitrate is 100 kb/s, and the value of the two pull-up
resistors is 10 kΩ, with a voltage supplied of Vcc=3.3 V.

Table 2. Pin set-up for one Launchpad

Master Pins Pull-up resistor Slave pins

UCB1SDA (P6.5) 10 kΩ UCB0SDA (P1.6)

UCB1SCL (P6.4) 10 kΩ UCB0SCL (P1.7)

GND NONE GND

Inter-platform communication protocol verification
This experiment aims at verifying the implementation of the inter-platform communication
protocol. The scenario consists of having an agent from one Launchpad send a message to
a foreign agent from another Launchpad and expect an answer from the foreign agent. All
measurements are performed using the Texas Instruments proprietary Code Composer Studio
(CCS) version 8.2.0.00007 and the RTOS Analyzer’s Execution Analysis tool, to examine how the
agents execute and interact within the MAES Framework.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 71

Therefore, two MSP432P401R Launchpads were connected with each other, and the MAES
Framework updated library was installed on both of them. In this scenario, the size of the
mailboxes for the I2C Master and I2C Slave is of 3 messages each, and both Launchpads allocate
a total of 5 agents that are listed in table 3 for Launchpad 1 and in table 4 for Launchpad 2.

Table 3. Agents on Launchpad 1.

Name Priority

I2C Slave_Task 15

Postman_Task 14

I2C Master_Task 13

AMS_Task 12

Write_Task 1

Table 4. Agents on Launchpad 2.

Name Priority

I2C Slave_Task 15

Postman_Task 14

I2C Master_Task 13

AMS_Task 12

Read_Task 1

All measurements were executed using launchpad 1 as reference considering it houses agent
“Write” Therefore, the results reported below correspond to Launchpad 1’s viewpoint. First, upon
start-up, all the agents are initialized before they can perform any of their tasks. The initialization
process takes place in compliance with the design of the MAES framework, which first sets up
sequentially the agents from the highest to the lowest priority. This is shown in figure 5, where
the I2C Slave, the Postman, and the I2C Master agents are the ones that initialize first. These are
followed by the AMS agent, who then allows agent “Write” to initialize to be ready for operation
and, immediately after the agent “Write” sends a message with the performative: REQUEST to
agent “Read” located on Launchpad 2.
As expected, right after the initialization of all the agents, agent “Write” takes over the execution
and composes the ACL message with the performative: REQUEST, sender, receiver and content
and posts the message to the I2C Master’s mailbox, as is shown on mark 1 from figure 6. Mark 2
shows the I2C Master preempting agent “write” to receive the message from its mailbox, compose
the packet with the header and payload (ACL message) and, initializing the I2C channel after it
returns execution to agent “write”(mark 3) for it to terminate the routine of message composition
and sending. Marks 4 & 5 show the I2C Master agent sending the message through the I2C bus
to Launchpad 2.
Finally, the “idle loop” task, which is part of the TI RTOS, runs when no other task is scheduled
to run. For the case shown in figure 7 it runs because it is waiting for the arrival answer message
from Launchpad’s agent “Read” (mark 1) after mark 2 shows how the I2C Slave executes when

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202072

it has received the answer message from Launchpad 2. On mark 3, the Postman takes over
execution, where the header of the packet gets read, and the Postman determines that the
message is intended for agent “Write” who is registered to the platform’s AMS, so it posts
the packet’s payload (ACL message) to agent “Write’s” mailbox. Mark 4 shows agent “Write”
executing, meaning it receives the confirmation message from agent “Read” thus marking the
end of the send/receive cycle. Afterwards, the cycle starts again for the next message.

Figure 5. Agent Initialization on Launchpad 1.

Figure 6. Message trace of a sent message on Launchpad 1.

Figure 7. Message trace of a received message on Launchpad 1.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 73

Precision of the Inter-platform communication protocol
This experiment is intended to determine the precision of the I2C bus and MAES Framework
while transmitting and receiving inter-platform messages. The scenario is the same as the one
described before. A sample of 300 messages was collected, where the time that is taken by
agent “Write” to send the request message and to receive the answer from agent “Read” was
measured. Figure 8 shows the histogram obtained from measuring the round-trip time (RTT). It
can be observed that the probability of having an RTT between 5.82 ms and 5.84 is around 45%,
which can be considered as the minimum time an agent has to wait for a response after sending
a message to a foreign agent when the I2C bus is working with perfect conditions.

Figure 8. Histogram showing the round-trip time of 300 samples sent from Launchpad 1 to Launchpad 2.

Relationship between the number of agents and the delay
The purpose of this experiment is to determine the effect on the round-trip time on an agent when
the number of agents transmitting at the same time on the I2C bus increases. To obtain the results,
the same setup, was used. This time the number of agents on each Launchpad was increased
simultaneously, first starting with one agent (agent “Write” on Launchpad 1 and agent “Read” on
Launchpad 2) until reaching 14 agents operating on each Launchpad, counting for a total of 14
trails. On each trial, all agents were triggered to start sending a message with the performative:
REQUEST at the same time, thus measuring the round-trip time for an agent “Write.” A number
of 300 samples were considered for each trial. The measurements are taken from Launchpad
1’s viewpoint. Figure 9 shows a Box Plot, where it can be observed that the precision of the
samples holds independently of the number of agents running on the Launchpad, as seen
before. Moreover, the Box Plot shows that when the number of agents accessing simultaneously

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202074

the I2C bus increases, the round-trip time for the agent “Write” increases as well. This result
indicates that the relationship between the number of agents on a Launchpad and the delay
increases linearly.

This linear relationship resembles the results obtained for an analysis conducted to characterize
the bus performance of satellite missions. In this case, CAN bus was used as the communication
channel between the attitude and orbit control subsystem (AOCS), that is based on a multi-agent
system application, and a distributed architecture of sensors. According to Carvajal-Godinez
[12], the results show that the bus utilization increases linearly, in the function of the number
of nodes in the network as long as the bus saturation is not reached. For MAES Framework
maximum capacity of the I2C was not reached because the Launchpad ran out of RAM. That
forced the experiment to be stopped at 14 agents. However, both results coincide on the fact
that for Multi-Agent based systems, the delay of the messages hold a linear relationship with
the number of agents/nodes for I2C and CAN buses, as long as the buses are not working at
maximum capacity.

Figure 9. Box Plot of the round-trip time of agent “Write” vs. the number of agents running

Conclusions and Future Work
This paper reports the design of a communication architecture that allows platforms, which are
running Multi-Agent framework for Embedded Systems (MAES), the ability for their local agents
to communicate with foreign agents thus extending the distributed control architecture that
serves as a tool for developers to design embedded real-time applications for future CubeSat
target missions.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 2020 75

It was determined that I2C fits the design requirements for the implementation of inter-platform
communication using MAES framework because of its scalability, ability to arbitrate messages,
and its low implementation complexity.
A static message routing strategy was selected for the implementation because the CubeSat
setting is contained enough not to demand a complex execution in order to handle inter-platform
messages.
The extension of MAES capabilities framework was done by adding the Agent Communication
Channel (ACC), who is the service on MAS that is in charge of determining if the messages are
local or need them to be encapsulated into the payload of the ACL message and deliver them
to a different platform. FIPA’s ACC is mapped as the I2C Master, Slave and Postman agents. The
experiments show that the round-trip time of a message is below 5.84 ms in around 50% of the
cases when there is no congestion. Further experiments show that the relationship between the
delay of the exchange of inter-platform messages increases linearly with the number of agents
that are simultaneously exchanging messages on the I2C bus while saturation is not reached.
The inter-platform communication protocol gives the MAES framework extended capacities to
perform inter-platform communication. Thus, the control unit architecture can be broadened,
allowing agents from different platforms to interact and perform cooperatively routines designed
by the developer, so it is not limited to the capabilities of just one platform.
Future work should consider the integration of mobility capabilities into MAES framework, which
allows agents to move between platforms promoting a flexible inter-operability to the framework,
so it can be arranged as it finds most convenient. Likewise, in future work, there can be an
extension of the Communication Class to allow wireless communication technologies to be the
channel between platforms. That could give the developer the ability to design its application
with more flexibility. Also, the addition of Wireless Communication can provide redundancy
based on a unique technology to the inter-platform communication, thus increasing the reliability
of MAES Framework.

References
[1] M. Swartwout, “The First One Hundred CubeSats A Statistical Look,” Journal of small Satellites, vol.

2, no. 2, pp. 213-233, 2013.
[2] P. Maes, “Artificial Life Meets Entertainment: Lifelike Autonomous Agents,” Communications of the

AC, vol. 38, no. 11, pp. 108-114, 1995.
[3] D. M. Glavic, “Agents and Multi-Agent Systems: A Short Introduction for Power Engineers,”

Montefriore Institute, 2006. [Online]. Available: http://www.montefiore.ulg.ac.be/~glavic/MAS-Intro_
Tech_report.pdf. [Accessed 19 3 2018].

[4] G. Coulouris, J. Dollimore, T. Kindberg and G. Blair, Distributed Systems Concepts and Design,
Addison-Wesley, 2012.

[5] C. Chan-Zheng and J. Carvajal-Godínez, “A Multi-Agent System Framework for Miniaturized
Satellite,” Tecnología en Marcha, vol. 32, no. 1, pp. 54-67, 2018.

[6] F. Bellifemine, G. Caire and D. Greenwood, Developing multi-agent systems with JADE, John Wiley
and Sons,Ltd, 2007.

[7] F. f. I. P. Agents, “Foundation for Intelligent Physical Agents,” FIPA, 2018. [Online]. Available: http://
www.fipa.org/. [Accessed 19 3 2018].

[8] J. D. Jensen and D. C. M. Swenson, “Command and Data Handling Subsystem Design for the
Ionospheric Observation Nanosatellite Formation (ION-F),” SSC00, vol. VII, no. 3, 2002.

Tecnología en Marcha,
Vol. 33, N.° 4, Octubre-Diciembre 202076

[9] C. Nagarajan, R. G. D’souza, S. Karumuri and K. Kinger, “Desing of a Cubesat Computer Architecture
using COTS Hardware for Terrestrial Thermal Imaging,” in 2014 IEEE International Conference on
Aerospace Electronics and Remote Sensing Technology, 2014.

[10] S. Sabri, S. Yuhaniz and K.Kamardin, “Designing a low Cost CubeSat’s Command and Data
Handling Subsystem kit,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 10, pp.
6259-6264, 2016.

[11] Texas Instruments, “MSP432P401R SimpleLink Microcontroller LaunchPad,” Texas Instruments,
2018.

[12] J. Carvajal-Godinez, J. Guo and E. K. A. Gill, "Effects of Saturation for High-Throughput Satellite
Buses," in IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 2, pp. 1014-1025,
April 2020, doi: 10.1109/TAES.2019.2940341.

[13] S. Interiano, “A Communication Protocol Design for Multi-Agent Systems Framework for Embedded
Systems (MAES)-based platforms,” Politecnico di Milano, Milano,Italy, 2018.

