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Abstract
In recent years space-science and exploration have become more accessible due to the 
popularization of the concept of CubeSats. CubeSats are being used as a result of their 
convenient size and weight requirements, allowing for target missions to be designed, developed, 
and launched with a significant reduction of costs compared to traditional space missions.  
Furthermore, the development of target missions has become more intricate, forcing a shift in 
the traditional notion of using a centralized control architecture to a distributed architecture.  
A distributed architecture tackles the problem of a possible functionality loss over the control 
unit. This paper describes the extension of capabilities of the Multi-Agent Systems Framework 
for Embedded Systems (MAES). This extension provides MAES framework with the ability to 
perform inter-platform communication, so now the control unit architecture can be broadened 
allowing agents from different platforms to interact and perform cooperatively different routines 
designed by the developer, so it is not limited to the capabilities of just one platform. Moreover, 
this paper shows the results of the experimental setup showing the precision of inter-platform 
message exchange and the relationship between the delay of the exchange of inter-platform 
messages and the number of agents that are simultaneously running on each platform.
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Resumen
En los últimos años, la ciencia espacial y la exploración se han vuelto más accesibles debido 
a la popularización del concepto de CubeSats. Los CubeSats se está utilizando debido a 
sus convenientes requisitos de tamaño y peso, lo que permite que misiones especificas se 
diseñen, desarrollen y lancen con una reducción significativa de los costos en comparación 
con las misiones espaciales tradicionales. Además, el desarrollo de misiones específicas se 
ha vuelto más complejo, forzando un cambio en la noción tradicional de usar una arquitectura 
de control centralizada para una arquitectura distribuida. Una arquitectura distribuida resuelve 
el problema de una posible pérdida de funcionalidad en la unidad de control. Este documento 
describe la extensión de las capacidades del framework de sistemas multiagentes para 
sistemas embebidos (MAES). Esta extensión proporciona al framework MAES la capacidad de 
realizar comunicaciones entre plataformas, de modo que ahora la arquitectura de la unidad 
de control puede ampliarse, permitiendo a los agentes de diferentes plataformas interactuar y 
realizar de forma cooperativa diferentes rutinas diseñadas por el desarrollador, por lo que no 
se está limitado a las capacidades de solo una plataforma. Asimismo, este documento muestra 
los resultados de la configuración experimental que muestra la precisión del intercambio de 
mensajes entre plataformas y la relación entre el retraso del intercambio de mensajes entre 
plataformas y la cantidad de agentes que se ejecutan simultáneamente en cada plataforma.
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Introduction
Space science and exploration have become more accessible in recent years due to the 
popularization of the concept of CubeSats. Twenty years ago, CubeSats were developed as 
a concept model that intended to involve universities to participate in space missions [1]. It 
rapidly caught the attention of researchers, space agencies, governments, and companies 
because of the specifics on size and weight requirements meant that targeted missions could 
be designed, developed and launched with a significant reduction of costs. The development 
of more intricate target missions has forced a shift in the traditional notion of using a centralized 
control architecture to an architecture that is distributed since once the CubeSat is launched 
there is no way of providing maintenance to it.  Hence, if the control unit is affected, then the 
entire system may lose functionality. One of the ways the space industry has been doing this 
shift is using multi-agent systems.
A Multi-Agent System (MAS) can be defined as a dynamic distributed system that envelops 
autonomous agents/nodes, who cohabit inside a society where they can work individually on a 
specific task, or they can interact with others and work together towards achieving a common 
goal [2]. The architecture of MAS is modular, making it scalable, therefore allowing agents to be 
linearly aggregated. The system as a whole is robust since the architecture allows the system to 
tolerate failures of one or more agents, as the responsibilities and control are shared between 
the agents. [3]
According to Coulouris et al. [4], the advantages of adopting a distributed architecture are given 
by the capacity of concurrency program executions, no need of centralized control, scalability, 
and independent failure, meaning that if a component of the system fails the other ones can still 
run independently, and they may never notice that another component has failed. As a result, the 
Multi-Agent Systems Framework for Embedded Systems (MAES) was developed to provide the 
developer with a tool to implement real-time MAS based applications in embedded environments. 
This capability is something that the market was lacking, especially for the development of real-
time applications in the space industry using distributed architectures. 
The design and implementation of the MAES framework were carried out by Chan-Zheng et al. 
[5]. The development started as a result of the need in the science community to have a tool 
that fills the gap between real-time operating systems and multi-agent systems used for satellite 
applications. Since MAES is still in the initial stage of development, for it to be released and used 
by developers in the design of future satellite applications the guidelines given by the Foundation 
for Intelligent Physical Agents (FIPA) are used. FIPA is a foundation that advocates for the 
standardization of distributed agent-based applications and services through collaboration with 
international companies, universities, and the IEEE Computer Society [6] [7].
MAES framework conveniently reduces the time and effort of developers to implement a MAS 
application because it already implements the services and the primitive communication 
structure with the intra-platform agents for a highly constraint embedded platform. This paper 
focuses on the description of the upgrade done to the MAES framework in order to allow for inter-
platform communication. Thus, the control unit architecture can be enhanced to allow agents 
from different platforms to interact and perform cooperatively different routines designed by the 
developer, so it is not limited to the capabilities of just one platform. 
The current state of MAES framework development so far complies with some FIPA specifications, 
which are the minimum requirements for intra-platform operation (see table 1).
One of the purposes of this work is to add more capabilities to MAES’s framework so it can allow 
communication between an assortment of platforms, all running MAES in a given communication 
topology. 
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Table 1. Current minimum FIPA specifications implemented on MAES

FIPA component

Agent

Agent Platform

Agent Management Service

Message Transport Service (Intra-platform)

The outline of the paper is as follows. First the article describes the design of the inter-platform 
design, extending on the communication protocol selection, message strategy selection, 
and its implementation. Then is described the verification of the operation of inter-platform 
communication as to observe the implementation’s operation. Finally, it draws the main 
conclusions and discusses future work developments. 

Inter-Platform Protocol Design 
This Section presents the design choices for the communication protocol, following the FIPA 
guidelines for Multi-Agent Systems, which addresses the question: “What is the most efficient 
architecture that best manages the resources for communication applications in multi-platform 
systems running MAES?” 

Communication Protocol Selection.
The communication protocol chosen for the implementation of the inter-platform message 
transport service of MAES is I2C (Inter-Integrated Circuit) because of its usage in previous 
research related to Cubesats design for the communication between the on-board computer 
(OBC) and peripheral devices [8] [9]. The small footprint and other advantages of I2C have 
contributed to its popularity that, in turn, has driven most microcontroller manufacturers to 
include I2C among the standard BUS interfaces provided [10].

Message Routing Strategy.
In order to extend the communication of agents and give them the ability to communicate 
between agents outside its platform, the inter-platform messages shall act in compliance with 
the FIPA specifications. FIPA specifications do not explicitly specify what protocol must be used 
when inter-platform communication is intended. FIPA specifications mention only how the packet 
must be composed in term of its contents. 
In an abstract form, the message can be expressed in two parts: message envelope and 
message payload. The message envelope comprises a collection of parameters expressed as a 
key-value tuple (name/value pair). The envelope must contain at least the to-from, date, and acl
representation. The message payload embodies the encoded Agent Communication Language 
(ACL) message. Therefore, this paper describes the design choices of a static approach. 
The static approach begins with the assumption that the sender agent knows to whom it wants 
to communicate with, much as in other types of communication systems, the recipient is always 
known, the only thing that both approaches handle is how they deliver the messages. The 
message packet is comprised by the header (Sender I2C address, Receiver I2C address, and 
message type) and the payload (Sender AID, Receiver AID, message type and content). 
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Static Approach
The static approach works as follows. At start-up, each platform knows the other platforms’ ID, 
which then correlates to their I2C addresses, so all platforms have the information of each other 
before any message exchange is done. Afterward, when the sender agent sends a message to a 
receiver agent, the local Message Transport System (MTS) has first to check if the receiver agent 
is local. If it is, it proceeds as it is already implemented by MAES Framework on the contrary 
when the receiver agent is not registered to the same platform as the sender agent the next step 
is to search by the agents’ AID. The agent AID is a concatenation of the platform’s ID and its ID. 
So,  when the search is done in the table previously shared, the MTS takes from the agent AID, 
the portion of the platform’s ID and determines the I2C address of the platform. That enables 
the MTS to compose the data message’s header and the payload (Packet), which is sent to the 
platform where the receiver agent is registered.
When the message is received at the destination platform, the MTS looks in the payload for the 
receiver’s agent AID and confirms that the agent is registered to the Agent Management Service 
(AMS). So, if the case occurs where the agent is de-registered (killed) from its AMS, the receiver 
platform will send a NON-UNDERSTOOD message to the sender agent, and that packet is 
discarded.  
The static approach fits best into the CubeSat environment because the setting is contained 
enough to consider it a small network. The advantage of using the static approach is that it 
demands less CPU/Memory overhead for storing each foreign agent’s AID and corresponding 
I2C address of the platform it belongs to and does not add processing time for the inquire of the 
foreign agent’s location. Furthermore, there is no bandwidth overhead because updates are not 
shared between the platforms, thus providing more control over the traffic that is routed. 

Inter-platform Communication Implementation
The hardware that was used for the experimental set-up is the MSP432P401R SimpleLink 
Microcontroller LaunchPad, which uses Texas Instruments proprietary real-time operating 
system called TI RTOS SYS/BIOS. In such operating system applications are organized by a 
collection of threads, meaning that each application’s function is encapsulated in a stream of 
instructions that are executed by the processor. The real-time operating system supports four 
different types of threads: Hardware interrupts (Hwi), Software interrupts (Swi), tasks, and the 
idle thread. MAES Framework architecture is based on tasks, as each task have its stack, apart 
from Hwi and Swi that share the same stack (system stack). This mechanism allows the task to 
take over a resource, and it makes other tasks wait for the release of the resource (block). Tasks 
are executed based on their priority level. There are 16 priority levels where level 0 is the lowest 
priority, and 15 corresponds to the highest priority, while level -1 means that the task is inactive. 
The priority level is defined by the developer; thus, it gives the developer the flexibility to decide 
how the tasks are executed.
As discussed before, MAES’ framework architecture is based on tasks, meaning that each agent 
is equivalent to a single task within the framework. Therefore, the agent that has the highest 
priority is the one who is going to be running first and can request actions to another agent.
Each interaction between agents is done through the exchange of messages. TI-RTOS has a 
set of modules that allow tasks to communicate with each other, which are: queues, events, 
semaphores, and mailboxes. MAES Framework MTS is mapped to the usage of mailboxes; each 
agent has its mailbox, so, for example, a sender agent can signal when a message is posted 
to the receiver agent (notifies of an incoming message), for which the receiver agent’s mailbox 
prepares to receive the data from the sender.
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Agent Platform and Agent message classes extension
The base version of the MAES Framework contains four main classes: Agent class, Agent 
Message class, Agent Platform class, and Behaviour-related classes, as described by Chang-
Zheng [5]. Thus, in order to bring out the capabilities of inter-platform agent communication, this 
section describes the extension of the Agent Message and Agent Platform classes, and it adds 
the Communication class to the already existing MAES library.
The extension of the Agent Platform class includes the methods needed to add the Agent 
Communication Channel (ACC). The ACC is the service on MAS who is in charge of determining 
if the messages are local or they need to be encapsulated into the payload of the ACL message 
to be delivered to a different platform (figure 1). The ACC is where the foreign messages arrive 
at the platform and where they are de-capsulated to be forwarded to the receiver agent.

Figure 1. Block description of the communication method used for MAES inter-platform communication.

On MAES the ACC is mapped as the I2C Master, Slave, and Postman agents, see figure 2.  These 
new agents are all initialized like a regular agent when each method runs it creates its unique 
task and handle (Agent_AID) and its corresponding mailbox and mailbox handle. Besides, 
when the intent is to use the inter-platform communication, the developer must know that for this 
case the agent priority allocation of MAES changes, which means is that the I2C Slave agent 
now becomes the agent with the highest priority. As a result, the incoming messages from the 
other platforms are addressed as soon as possible, since they are considered as an external 
interruption that must take precedence over local message addressing.  Then, the I2C Slave’s 
“Postman,” who is the agent that oversees the unpacking of the packets received by the I2C 
Slave, becomes the agent with the second-highest priority. Next, the I2C Master agent, who is 
the agent that proceeds with the encapsulation of the message contents into the I2C Packet, 
gets the third-highest priority as a result of the possible immediate need to send a response 
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to an external message that arrived from a foreign agent. Lastly, the AMS agent becomes the 
agent with the fourth highest priority. The remaining local agents that are created follow the 
already established priority description from the base MAES Framework, which is defined by the 
developer. 

Figure 2. Block description of the Agent Communication Channel

Regarding the Agent Message class, the extension takes advantage of the polymorphism of the 
functions, which allows for a member function to act differently according to the type of object 
that invokes it. This property is used for the send function (see figure 3), where depending on the 
intended recipient, the message is addressed to either the local agent or to a foreign agent, the 
distinction lies in how the receiver agent is called. That is an important distinction because when 
an agent is registered to a platform and therefore becomes a member of the platform’s AMS, the 
agent is given a unique name inside the platform it belongs. That is called the Agent_ID, and 
it is the name by which the other local agents refer to when they choose to send a message to 
it. Concerning the inter-platform communication, each agent has what can be called an “Alias” 
by which agents from different platforms can refer to it. The agent’s “Alias” is an unsigned 
16-bit integer (uint16_t), that concatenates the eight most significant bits (MSB), the number of 
the Platform’s (uint8_t) identifier, and the eight least significant bits  (LSB) the agent’s (uint8_t) 
identifier. The agent identifier is a unique integer from 1 to 62 defined by the developer.  This 
range is a convention defined by the MAES framework, in which the maximum agents a platform 
can host is 62.
Each Agent Alias represents the global name by which the agent is referred to inside the whole 
MAES Framework. That means that even if the agent’s identifier is the same on more than one 
platform, there will not be a conflict of Aliases because the identification of the platform ID is the 
distinction between the Aliases. Also, it is not possible that inside a platform there is more than 
one agent with the same agent identifier because during compilation an error will be prompted 
to the user warning that the agent identifier is already being used.

Figure 3. Snippet of class Agent_Msg regarding the send function. 
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Now, both send functions construct the ACL message with the message parameters: sender, 
receiver, performative, and content and post the message to the mailbox of the intended 
recipient. So, what happens when the intended recipient belongs to another platform? Which 
mailbox does the message is posted? The answer is that the ACL message is posted into the 
I2C Master’s mailbox, which is the agent that takes the recently posted ACL message (which is 
now considered the payload) and adds the envelope that contains the parameters: to-from and  
acl-message, which is described more in detail in the next subsection.

Agent Communication Channel Class
The Communication class encases the usage of the I2C protocol, where each platform can act as 
an I2C Master when a local agent chooses to send a message to a foreign agent, or act as Slave 
when an incoming message arrives with the destination of a local agent. The Master and Slave 
each have their task (each of them is an individual agent) and consequently their stack allowing 
for incoming and outgoing messages to be allocated in different queues. Therefore, there are no 
conflicts on the utilization of the I2C channel, which means that the Master and Slave each use 
one out of the four MSP432P401R Launchpad modules.
After a message about the intention of a local agent to communicate with a foreign agent is 
posted in the I2C Master’s mailbox. The I2C Master agent receives the message and proceeds 
with the encapsulation of the contents into the I2C Packet. The ACL message with the sender 
Alias, receiver Alias, performative, and content are added to the payload structure of the packet. 
Finally, the Platform receiver address and, Platform sender address are placed in the header 
structure of the packet, as shown in figure 4.

Figure 4. I2C Packet encapsulation of the inter-platform message exchange 

The I2C Master determines the Platform receiver address looking at the receiver Alias field and 
correlates the MSB 8bits of the agent’s (uint16t) Alias with the table of I2C platform addresses 
that are already registered at start-up. When the 8_bit I2C address is determined, it is placed in 
the Platform receiver address field. The Platform sender address parameter is filled by copying 
the local platform’s I2C address.
The I2C packet refers to a uint8 variable that encapsulates the header and the ACL message, 
that is passed by value to the I2C Master driver API, where a parameter is a uint8 variable 
previously mentioned. Other filled parameters are the 8_bit I2C receiver address, the packet size 
and the intention of writing information to the I2C Slave of the receiver platform.
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 During the reception process, the I2C Slave agent receives the I2C packet and forwards it to the 
“Postman,” who first checks the receiver Alias field and compares the 8 MSB with the platform’s 
ID  to determine that the message is intended for the said platform. Then, the 8 LSB of the receiver 
Alias are compared to find the match. The “Postman” does an inquiry to the platform’s AMS using 
the receiver Alias and asks for the Agent’s_AID. Once the “Postman” has the Agent’s_AID, it 
proceeds to post the ACL message to the newfound local agent’s mailbox. After the local agent 
receives the message, it proceeds with the instructions given by the performative and content of 
the ACL message that was already defined by MAES intra-platform methods. In case there is no 
correspondence between the platform address or the agent “Alias,” the “Postman” constructs an 
I2C packet with a message reply to the sender Alias with the performative NOT_UNDERSTOOD.

Multi-Agent System Inter-Platform Communication Implementation and Testing
This section is devoted to the operating performance of the inter-platform communication. For 
these experiments, three applications are used to show the verification of the inter-platform 
communication protocol execution, the precision of the message round trip time and the relation 
between the delay and the number of agents accessing simultaneously to the I2C bus. 

Hardware Setup
The hardware setup used to perform measurements is described in what follows. The Launchpad 
used is the Texas Instruments MSP432P401R SimpleLink Microcontroller LaunchPad, who 
features 64KB RAM, 256KB Flash memory, a low power ARM 32-bit Cortex-M4F microcontroller 
(MCU), up to 48 MHz system clock. Additionally, it has an onboard probe for programming and 
debugging, two buttons and two LEDs for user interaction, backchannel UART through USB to 
PC, lastly four I2C modules and up to eight SPI modules. [11] 
In order to carry out the measurements to verify the behavior of the implementation, two 
MSP432P401R Launchpads were used. They were connected between each other using the 
pinout described in table 2 for the I2C Master and Slave connection. That is because of the need 
to use two libraries (I2CMaster.h and I2CSlave.h) from Texas Instruments that run with the Real-
Time Operating System (RTOS). Here, the bitrate is 100 kb/s, and the value of the two pull-up 
resistors is 10 kΩ, with a voltage supplied of Vcc=3.3 V.

Table 2. Pin set-up for one Launchpad

Master Pins Pull-up resistor Slave pins

UCB1SDA (P6.5) 10 kΩ UCB0SDA (P1.6)

UCB1SCL (P6.4) 10 kΩ UCB0SCL (P1.7)

GND NONE GND

Inter-platform communication protocol verification
This experiment aims at verifying the implementation of the inter-platform communication 
protocol. The scenario consists of having an agent from one Launchpad send a message to 
a foreign agent from another Launchpad and expect an answer from the foreign agent. All 
measurements are performed using the Texas Instruments proprietary Code Composer Studio 
(CCS) version 8.2.0.00007 and the RTOS Analyzer’s Execution Analysis tool, to examine how the 
agents execute and interact within the MAES Framework.
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Therefore, two MSP432P401R Launchpads were connected with each other, and the MAES 
Framework updated library was installed on both of them. In this scenario, the size of the 
mailboxes for the I2C Master and I2C Slave is of 3 messages each, and both Launchpads allocate 
a total of 5 agents that are listed in table 3 for Launchpad 1 and in table 4  for Launchpad 2.  

Table 3. Agents on Launchpad 1.

Name Priority

I2C Slave_Task 15

Postman_Task 14

I2C Master_Task 13

AMS_Task 12

Write_Task 1

Table 4. Agents on Launchpad 2.

Name Priority

I2C Slave_Task 15

Postman_Task 14

I2C Master_Task 13

AMS_Task 12

Read_Task 1

All measurements were executed using launchpad 1 as reference considering it houses agent 
“Write” Therefore, the results reported below correspond to Launchpad 1’s viewpoint. First, upon 
start-up, all the agents are initialized before they can perform any of their tasks. The initialization 
process takes place in compliance with the design of the MAES framework, which first sets up 
sequentially the agents from the highest to the lowest priority. This is shown in figure 5, where 
the I2C Slave,  the Postman, and the I2C Master agents are the ones that initialize first. These are 
followed by the AMS agent, who then allows agent “Write” to initialize to be ready for operation 
and, immediately after the agent “Write” sends a message with the performative: REQUEST to 
agent “Read” located on Launchpad 2.
As expected, right after the initialization of all the agents, agent “Write” takes over the execution 
and composes the ACL message with the performative: REQUEST, sender, receiver and content 
and posts the message to the I2C Master’s mailbox, as is shown on mark 1 from figure 6. Mark 2 
shows the I2C Master preempting agent “write” to receive the message from its mailbox, compose 
the packet with the header and payload (ACL message) and, initializing the I2C channel after it 
returns execution to agent “write”(mark 3) for it to terminate the routine of message composition 
and sending. Marks 4 & 5 show the I2C Master agent sending the message through the I2C bus 
to Launchpad 2.
Finally, the “idle loop” task, which is part of the TI RTOS, runs when no other task is scheduled 
to run. For the case shown in figure 7 it runs because it is waiting for the arrival answer message 
from Launchpad’s agent “Read” (mark 1) after mark 2 shows how the I2C Slave executes when 
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it has received the answer message from Launchpad 2. On mark 3, the Postman takes over 
execution, where the header of the packet gets read, and the Postman determines that the 
message is intended for agent “Write” who is  registered to the platform’s AMS, so it posts 
the packet’s payload (ACL message) to agent “Write’s” mailbox. Mark 4 shows agent “Write” 
executing, meaning it receives the confirmation message from agent “Read” thus marking the 
end of the send/receive cycle. Afterwards, the cycle starts again for the next message.

Figure 5. Agent Initialization on Launchpad 1. 

Figure 6. Message trace of a sent message on Launchpad 1.

Figure 7. Message trace of a received message on Launchpad 1.
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Precision of the Inter-platform communication protocol 
This experiment is intended to determine the precision of the I2C bus and MAES Framework 
while transmitting and receiving inter-platform messages. The scenario is the same as the one 
described before. A sample of 300 messages was collected, where the time that is taken by 
agent “Write” to send the request message and to receive the answer from agent “Read” was 
measured.  Figure 8 shows the histogram obtained from measuring the round-trip time (RTT). It 
can be observed that the probability of having an RTT between 5.82 ms and 5.84 is around 45%, 
which can be considered as the minimum time an agent has to wait for a response after sending 
a message to a foreign agent when the I2C bus is working with perfect conditions.

Figure 8. Histogram showing the round-trip time of 300 samples sent from Launchpad 1 to Launchpad 2.

Relationship between the number of agents and the delay
The purpose of this experiment is to determine the effect on the round-trip time on an agent when 
the number of agents transmitting at the same time on the I2C bus increases. To obtain the results, 
the same setup, was used. This time the number of agents on each Launchpad was increased 
simultaneously, first starting with one agent (agent “Write” on Launchpad 1 and agent “Read” on 
Launchpad 2) until reaching 14 agents operating on each Launchpad, counting for a total of 14 
trails. On each trial, all agents were triggered to start sending a message with the performative: 
REQUEST at the same time, thus measuring the round-trip time for an agent “Write.” A number 
of 300 samples were considered for each trial. The measurements are taken from Launchpad 
1’s viewpoint.  Figure 9 shows a Box Plot, where it can be observed that the precision of the 
samples holds independently of the number of agents running on the Launchpad, as seen 
before. Moreover, the Box Plot shows that when the number of agents accessing simultaneously 
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the I2C bus increases, the round-trip time for the agent “Write” increases as well. This result 
indicates that the relationship between the number of agents on a Launchpad and the delay 
increases linearly. 

This linear relationship resembles the results obtained for an analysis conducted to characterize 
the bus performance of satellite missions. In this case, CAN bus was used as the communication 
channel between the attitude and orbit control subsystem (AOCS), that is based on a multi-agent 
system application, and a distributed architecture of sensors. According to Carvajal-Godinez 
[12], the results show that the bus utilization increases linearly, in the function of the number 
of nodes in the network as long as the bus saturation is not reached. For MAES Framework 
maximum capacity of the I2C was not reached because the Launchpad ran out of RAM. That 
forced the experiment to be stopped at 14 agents. However, both results coincide on the fact 
that for Multi-Agent based systems, the delay of the messages hold a linear relationship with 
the number of agents/nodes for I2C and CAN buses, as long as the buses are not working at 
maximum capacity. 

Figure 9. Box Plot of the round-trip time of agent “Write” vs. the number of agents running

Conclusions and Future Work
This paper reports the design of a communication architecture that allows platforms, which are 
running Multi-Agent framework for Embedded Systems (MAES), the ability for their local agents 
to communicate with foreign agents thus extending the distributed control architecture that 
serves as a tool for developers to design embedded real-time applications for future CubeSat 
target missions.
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It was determined that I2C fits the design requirements for the implementation of inter-platform 
communication using MAES framework because of its scalability, ability to arbitrate messages, 
and its low implementation complexity.
A static message routing strategy was selected for the implementation because the CubeSat 
setting is contained enough not to demand a complex execution in order to handle inter-platform 
messages.
The extension of MAES capabilities framework was done by adding the Agent Communication 
Channel (ACC), who is the service on MAS that is in charge of determining if the messages are 
local or need them to be encapsulated into the payload of the ACL message and deliver them 
to a different platform. FIPA’s ACC is mapped as the I2C Master, Slave and Postman agents. The 
experiments show that the round-trip time of a message is below 5.84 ms in around 50% of the 
cases when there is no congestion. Further experiments show that the relationship between the 
delay of the exchange of inter-platform messages increases linearly with the number of agents 
that are simultaneously exchanging messages on the I2C bus while saturation is not reached. 
The inter-platform communication protocol gives the MAES framework extended capacities to 
perform inter-platform communication. Thus, the control unit architecture can be broadened, 
allowing agents from different platforms to interact and perform cooperatively routines designed 
by the developer, so it is not limited to the capabilities of just one platform.
Future work should consider the integration of mobility capabilities into MAES framework, which 
allows agents to move between platforms promoting a flexible inter-operability to the framework, 
so it can be arranged as it finds most convenient. Likewise, in future work, there can be an 
extension of the Communication Class to allow wireless communication technologies to be the 
channel between platforms. That could give the developer the ability to design its application 
with more flexibility. Also, the addition of Wireless Communication can provide redundancy 
based on a unique technology to the inter-platform communication, thus increasing the reliability 
of MAES Framework.
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