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Abstract
Eight global and eight local optimization methods were used to calibrate the HBV-TEC 
hydrological model on the upper Toro river catchment in Costa Rica for four different calibration 
periods (4, 8, 12 and 16 years). To evaluate their sensitivity to getting trapped in local minima, 
each method was tested against 50 sets of randomly-generated initial model parameters. All 
methods were then evaluated in terms of optimization performance and computational cost. 
Results show a comparable performance among various global and local methods as they highly 
correlate to one another. Nonetheless, local methods are in general more sensitive to getting 
trapped in local minima, irrespective of the duration of the calibration period. Performance of the 
various methods seems to be independent to the total number of model calls, which may vary 
several orders of magnitude depending on the selected optimization method. The selection of 
an optimization method is largely influenced by its efficiency and the available computational 
resources regardless of global or local class.
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Resumen
Ocho métodos de optimización global y ocho métodos de optimización local fueron utilizados 
para calibrar el modelo hidrológico conceptual HBV-TEC en la cuenca alta del río Toro en Costa 
Rica para cuatro diferentes periodos de calibración (4, 8, 12 y 16 años). Con el propósito de 
evaluar la sensibilidad de quedar atrapados en mínimos locales, cada método fue probado 
contra 50 sets de parámetros iniciales generados aleatoriamente. Todos los métodos fueron 
entonces evaluados en términos del desempeño de optimización y el costo computacional. Los 
resultados muestran un desempeño comparable entre varios métodos locales y globales dado 
que se correlacionan fuertemente entre ellos. Sin embargo, los métodos locales son generalmente 
más sensitivos a quedar atrapados en mínimos locales independientemente de la duración del 
periodo de calibración. El desempeño de optimización parece ser independiente del número 
total de llamas del modelo, el cual puede variar varios órdenes de magnitud dependiendo del 
método de optimización seleccionado. La selección final de un método de optimización está 
grandemente influenciada por su eficiencia y el nivel de recursos computacionales disponible 
indistintamente de clase local o global.

Introduction
Conceptual hydrological models are important tools in operational hydrology, water resources 
planning and management. These models approximate the general physical mechanisms 
governing the hydrologic processes through simplified equations, which make them less 
demanding in terms of model input data and therefore more computationally efficient [1]. 
Nevertheless, due to their simplified structure, initial values of relevant parameters of conceptual 
models are usually unknown and must be estimated through calibration using suitable 
optimization algorithms [2]. In general, optimization methods can be classified as either local or 
global based on their search strategies [3]. Local methods rely on exploitation, which means that 
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they are carried out by initialization of parameter sets and then iteratively minimizing the objective 
function; according to a set of deterministic rules. These rules direct the parameter search 
towards finer solutions. Exploitation may lead to high performance and faster convergence of 
the optimization method. Nonetheless, the decision on how to sample the following parameter 
space depends on previous samplings, which can cause the method to getting trapped in 
multiple local minima or promote premature convergence. Global methods on the other hand, 
rely on exploration, meaning that the optimization of the objective function is improved by 
randomly looking into different regions of the parameter space, while keeping the information 
learned from previous samplings. At the start of the optimization process, global methods largely 
explore the parameter space to subsequently converge into sub-regions that might contain the 
global minima based on the response surface type. This is done by a set of deterministic and 
statistical rules [4]. Estimates from local optimization methods may considerably vary based 
the choice of starting parameter values [5]. Global methods on the other hand can cope with 
multiple local minima, discontinuous derivatives and high dimensionality, but are considerably 
slower than local methods. This is particularly relevant when the evaluation of the cost function 
is expensive and only a limited number of evaluations are feasible. This somehow makes 
global methods less attractive in hydrological applications due to its elevated computational 
cost [6]. Various studies have compared the application of global optimization methods in 
hydrological modelling using several model-structures and under different climatic conditions 
[7:9]. Nevertheless, an extensive comparison of local and global methods aimed to identify the 
pros and cons of each method in hydrological modelling has been mostly left aside. Relevant 
research questions include: How effective are global and local optimization methods for the 
calibration of a conceptual hydrological model?, How prone are global and local optimization 
methods to getting trapped in local minima based on different sets of initial model parameters? 
Does the duration of the calibration period significantly affect the performance of the various 
optimization methods and can shorter calibration periods be used confidently? Consequently, 
this study attempts to answer the abovementioned research questions through the calibration of 
the HBV-TEC conceptual hydrological model applied to a case study in Costa Rica.

Methodology
Study area and data sources

The upper Toro River catchment (43.15 km2) is located in the province of Alajuela in north-
western Costa Rica (figure 1). The topography is mountainous with elevations ranging from 2593 
to 1334 m. The slope is steep with a mean value of 23%. The mean annual rainfall of the area is 
4200 mm and the mean annual temperature range is between 17.2 and 32.8 ºC. 

The land use in the catchment is dominated by forest (62%) and grassland (35%) with minor 
contributions from other uses; mainly water and urban. The catchment has a highly complex 
precipitation pattern and its temporal and spatial distribution is influenced by factors such as 
El Niño southern oscillation (ENOS), geomorphology, rugged terrain and microclimates. Rainfall 
and temperature were calculated from aggregated daily measurements at 8 rain-gauges (figure 
1). Daily observed streamflow data for the same period were obtained from ICE-12-6 streamflow 
gauging station. The catchment boundary was delineated using a RapidEye 10 m digital 
elevation model (DEM). The monthly long-term mean potential evapotranspiration records were 
calculated using the Penman-Monteith method. Rainfall and temperature were calculated using 
a powered-3 inverse distance weighting (IDW) interpolation method.
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Figure 1. (a) Position of the upper Toro River catchment in Costa Rica; (b) Upper Toro River catchment boundary, 
river network, RapidEye digital elevation model (DEM), rain-gauges and streamflow gauging station.

The HBV-TEC hydrological model 
In this study, the HBV-TEC hydrological model [10] was selected for its simplicity, local 
development, parsimony, robustness and ease of use. The HBV-TEC is a redesign of the HBV 
(Hydrologiska Byråns Vattenbalansavdelning) model [11] developed using the R programming 
language [12]. The HBV-TEC is a semi-distributed conceptual rainfall-runoff model for 
continuous calculation of runoff. The basic concept is that discharge is related to storage 
through a conservation of mass equation and a transformation routine. The hydrologic response 
is easily modelled due to the use of lumped/semi-distributed data and a simplified conceptual 
representation of flow processes.  The structure of the HBV-TEC model consists of routines for 
precipitation, soil moisture, response function and transformation. The model can be run using 
daily or hourly time-steps; input data are precipitation, air temperature and long-term estimates 
of monthly potential evapotranspiration.

Optimization process and experimental design
Eight global and eight local optimization methods were used in this study. All methods are 
currently implemented in R (table 1). The Nash-Sutcliffe efficiency (NSE) was selected as the 
objective function of the optimization process. For the purpose of this paper, NSE efficiency 
values over 0.75 are considered satisfactory. The NSE objective function is defined as:
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where i is the timestep, n is the total number of time-steps, w is relative weight assigned to each 
observation, Q is the discharge and subscripts obs and mod refer to observed and modelled 
correspondingly.
A total of nine HBV-TEC model parameters (perc, uzl, k0, k1, k2, maxbas, fc, lp and beta), 
which have a direct influence on runoff generation were considered. The chosen parameters 
control the total volume and shape of hydrographs and are associated with the response, 
routing and soil moisture routines of the model. Parameter optimization ranges (table 2) were 
selected based on recommended literature values [13:16]. Additionally, optimization methods 
Differential Evolution Optimization (Deoptim), Genetic Algorithms (ga) and DIviding RECTangles 
Algorithm for Global Optimization (direct) do not include arguments for initial parameter values; 
on the contrary, only upper and lower parameter bounds of the cost function are considered. 
The experimental design was structured based on the abovementioned research questions. 
To increase the likelihood that the full parameter space could be sampled by all optimization 
methods, 50 sets of initial parameters were randomly sampled across the feasible parameter 
boundaries of the HBV-TEC model by fixing a reproducible seed. This allowed each optimization 
method to start with the same initial sets of parameters, sequentially organized from 1 to 50. Four 
different durations of the calibration period, 4, 8, 12 and 16 years (Y4, Y8, Y12 and Y16), were 
selected from historical records ranging from years 1994 to 2010. Termination criteria was based 
either on (a) relative convergence tolerance, where the optimization method stops if it is unable 
to reduce the value by a factor of relative tolerance, which defaults to sqrt(CPU-precision), in this 
case 1e-6 or (b) or maximum number of function evaluations allowed (set to 20000), whichever 
limit was reached first. Two Intel® Xeon® E5-2630 v3 @ 2.40 GHz (8 cores, 16 threads) with 32 
GB-RAM each, were used to run the entire experiment in parallel using R libraries doParallel 
and foreach. Since the execution time of the cost function (HBV-TEC) varies with the duration 
of the calibration period, the selected optimization method and the available computational, the 
computational cost is herein presented in terms of model calls instead of user time. 

Table 1. Global and local optimization methods used in the calibration of the HBV-TEC model

Method R_function R_package Class
Nelder-Mead [17] nmk dfoptim local

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) [18] L-BFGS-B stats local
Hooke-Jeeves [19] hjk dfoptim local

Variable Nonlinear  Minimization [20] Rvmmin Rvmmin local
Bound Optimization BY Quadratic Approximation [21] bobyqa minqa local

Spectral Projected Gradient [22] spg BB local
PORT Gradient Algorithm [23] nlmimb stats local

Levenberg-Marquardt Algorithm [24] nls.lm minpack.lm local
Generalized Simulated Annealing [25] GenSA GenSA global
Differential Evolution Optimization [26] Deoptim Deoptim global

Genetic Algorithms [27] ga GA global
Shuffled Complex Evolution [28] SCEoptim hydromad global

Enhanced Particle Swarm Optimisation [29] hydroPSO hydroPSO global
DIviding RECTangles for Global Optimization [30] direct nloptr global
Controlled Random Search Local Mutation [31] csr2lm nloptr global

Augmented Lagrangian Minimization Algorithm [32] auglag nloptr global
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Table 2. HBV-TEC-TEC model parameters used in optimization

Parameter Description Units Routine Min. Max

perc Percolation - upper to lower zone mm/Δt Response 0.1 10

uzl Threshold for quick flow mm Response 10 100

k0 Recession coefficient - upper zone 1/Δt Response 1.00E-05 1

k1 Recession coefficient - upper zone 1/Δt Response 1.00E-05 1

k2 Recession coefficient - lower zone 1/Δt Response 1.00E-05 1

maxbas Length of weighting function Δt Transformation 1 100

Fc Maximum soil moisture storage mm Soil moisture 100 800

Lp Soil moisture threshold - Soil moisture 0.1 1

beta Contribution to runoff from rain - Soil moisture 1 4

Results and discussion

Performance of the optimization methods
Boxplots showing the optimized NSE distribution for all 50 sets of initial model parameters are 
presented for each optimization method (figure 2). 

Figure 2. Performance of optimization methods in terms of NSE efficiency for various calibration periods. Black dash 
line is set at satisfactory level (NSE = 0.75).
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Regardless of the duration of the calibration period, global methods generally outperform local 
methods. Local methods Rvmmin, bobyqa, spg and nlmimb, which exhibit the lowest model 
performance of the entire group, are an example of this. Even when these four methods were able 
to find high NSE values, above the satisfactory threshold of 0.80, their NSE distributions are much 
more dispersed and therefore less reliable. Local methods are in general; more sensitive to getting 
trapped in local minima from where they are unable to escape, particularly if different sets of initial 
model parameters are considered. Furthermore, the presence of numerous outliers suggests that 
this is most likely to be the consequence of extreme sets of initial model parameters that ultimately 
lead to unstable solutions. In consequence, these four methods fail to achieve satisfactory optimal 
parameter sets. The remaining local methods, predominantly nls_lm and hjk are considerably 
more stable and more effective than the four methods abovementioned, as all their pairs are 
above NSE = 0.75. Local methods nmk and L-BFGS-B, even when showing a better performance 
than methods Rvmmin, bobyqa, spg and nlmimb exhibit, do exhibit some outliers, which suggest 
that these two methods are more prone to getting trapped in local minima as compared to nls_lm 
and hjk. For instance, nls_lm and hjk are considered the most reliable of the local methods. 
Global methods on the other hand, show a remarkably comparable NSE distribution, with stable 
median values, short inter-quartile ranges and rare or non-existent outliers, which translates into 
low sensitivity (variance) to initial model parameter values and higher reliability. This suggests that 
the HBV-TEC model parameter space has a definite, converging global structure which cannot 
be fully described by some local methods. SCEoptim however, seems to be an exception, since 
it shows wider distributions, lower median values, and higher numbers of outliers when compared 
to the other global methods, which indicates that SCEoptim is the most sensitive global method 
to initial sets of model parameters. This suggests that in most cases, SCEoptim is incapable 
of finding a distinguishable region of the global minima irrespectively of the calibration period. 
SCEoptim shows overlapping boxplots of similar proportions along with several outliers. This 
reduces reliability on SCEoptim and its capacity to properly identify HBV-TEC model parameters 
when compared to the remaining global methods. Contrastingly, local methods nls_lm and hjk 
show performances as good as or even better than SCEoptim.
Since an optimization method should minimize the selected objective function as much as 
possible and exhibit a low sensitivity (variance) to initial model parameter values, the median 
and variance values of the NSE efficiency were used to create a normalized-metric ranking 
system that allowed for a simple and easy comparison of all optimization methods. The 
normalized-metric measures the performance of an optimization method in a scale varying from 
0.0 to 1.0, with assigned relative weights of 0.5 for both the median and variance. Afterward, an 
absolute ranking varying from 0 to 16 was associated to each optimization method. For the sake 
of simplicity, this normalized metric was aggregated across all calibration periods.
Consistently, global methods are ranked higher than local methods except for hjk and nls_lm, 
which perform better than SCEoptim (figure 3). Unvaryingly, Rvmmin, bobyqa, spg and nlmimb 
occupy the lowest rankings; supporting the notion that these are the least effective methods 
of them all. On the contrary, csr2lm, DEoptim and GenSA occupy the first three positions 
of the ranking, closely followed by hjk, which indicates that these are the most effective 
optimization methods. In an attempt to group the temporal-aggregated performance of all 
optimization methods, a Principal Components Analysis (PCA) was executed to transform the 
original variables into new variables that are independent and orthogonal (figure 4). PCA is a 
linear transformation technique that provides a smaller set of uncorrelated variables (called 
components) from a set of correlated variables while maintaining most of the information in the 
original data set [33]. Clusters of homogeneous variables can then be highlighted, isolated and 
analyzed. The standardization to the same variance-scale avoids some variables becoming 
dominant due to differences in measurements, magnitudes and units.
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PCA results shows that most of the total variance (58.9% + 22.2% = 81.1%) was captured in 
the first two principal components (figure 4a). Essentially, three independent clusters are clearly 
formed based on their unit-variance contribution and correlation. Cluster-1 includes Rvmmin, 
bobyqa, spg and nlmimb, which are the least effective methods. Cluster-2 includes all remaining 
methods (local and global) except L_BFGS_B which seems to behave independently, forming a 
third cluster (Cluster-3) by itself. Also, nls_lm exhibits a tendency towards independence but is 
still strongly related to Cluster-2. Optimization methods grouped within Cluster-2, which includes 
all global methods, show a strong positive correlation and are properly represented in terms 
of unit-variance, as their individual vectors (arrow lines) lay on top of one another and their 
magnitude reaches the outer circle, which represents the scaled unit-variance. Nevertheless, it 
can be seen that methods SCEoptim and nmk, even when strongly correlated to the remaining 
methods within Cluster-2, show a higher unit-variance since their individual vectors are closer 
to the origin than to the outer circle. This tendency is also consistent with the distribution (and 
therefore geometric similarities) of their respective boxplots (figure 2) and the normalized-metric 
ranking (figure 3).

Figure 3. Normalized-metric and absolute ranking positions for the performance of various optimization methods.

This supports findings by Piotrowski et al. [9], who states that with a few exceptions, almost all 
global optimization methods perform similarly in terms of performance. Cluster-1 and Cluster-2 
however, are uncorrelated since there is an angle of nearly 90 degrees between their grouped 
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vectors. Cluster-1 has a strong representation in terms of unit-variance but is moderately 
represented in terms of correlation since its unit vectors are more dispersed as compared to 
Cluster-2. Cluster-3, only represented by L_BFGS_B, lies somewhere in between clusters 1 and 
2. In essence, the NSE performance of the various optimization methods can be grouped in two 
main independent clusters, with method L_BFGS_B somewhere in between (figure 4b).

 
Figure  4. Calibration-period aggregated Principal Components Analysis (a) and cluster plot (b) of NSE efficiency for 

various optimization methods.

Duration of the calibration period
Local methods Rvmmin, bobyqa, spg and nlmimb show a visible increase on NSE efficiency 
as the duration of the calibration period increases (figure 2), indicating that these methods are 
considerably sensitive to the duration of the calibration period. It seems that longer calibration 
series carry more information than shorter series and therefore reduce the tendency of these 
methods to become stuck at local minima. However, the remaining local and all global methods 
are less subject to this time-dependent performance, since the increase in NSE scarcely reaches 
0.04 from Y4 to Y16 in most cases. Experimental results also show that longer calibration periods 
promote better model performance and possibly higher parameter identifiability. Conversely, if 
only short observation periods are available (in the order of 4 to 8 years) they still could be used 
in optimization with sufficient confidence. This is of course only valid for the upper Toro river 
catchment.

Computational cost
Scatter plots showing the performance of optimization methods in terms of NSE efficiency versus 
cost function calls for all 50 sets of initial model parameters are presented for each optimization 
method (figure 3). As abovementioned, each optimization method was executed using its default 
parameters and the maximum number of function evaluations allowed was set to 20000. Starting 
with local methods Rvmmin, bobyqa, spg and nlmimb, the choice of initial model parameter 
values heavily affects the capacity of these methods to find a feasible optimum solution.
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Figure 5. Performance of optimization methods in terms of NSE efficiency versus cost function calls for various 
optimization methods. Black dash line is set at satisfactory level (NSE = 0.75).

An extremely dispersed behavior through the entire model domain, underlines that these methods 
are highly sensitive to get trapped in local minima in just a few calls. Methods Rvmmin and 
bobyqa can be stuck in local minima in as few  as 200 model calls, exhibiting NSE values as low 
as 0.30 or below. On the other hand, method spg is both highly expensive and highly unreliable, 
as its computational cost reaches around 15000 calls and present a variation of NSE as low as 0 
and as high as 0.84. Method L_BFGS_B, once again performed independently from all methods. 
Additionally, L_BFGS_B requires between 1000 and 20000 model calls, which represents a 
variation of three orders of magnitude, making this method as expensive as most global methods. 
As for the other local methods, hjk requires between 3000 and 20000 model calls to achieve NSE 
values over 0.80, basically, a fluctuation of one order of magnitude. Method nmk requires between 
1000 and 5000 model calls. The situation is dramatically different nonetheless for nls_lm, as it 
is able to minimize the cost function in a range varying from 100 to 500 model calls. This is a 
significant difference of nearly two orders of magnitude as compared to hjk, nmk or L_BFGS_B but 
with comparable efficiencies. On the other hand, most global methods have similar computational 
costs when compared to the most effective local methods (hjk and nmk) except nls_lm, but show 
higher NSE independence and far less dispersion in general. Methods GenSA, HydroPSO and 
csr2lm exhibit very similar ranges of between 5000 and 20000 model calls, which make them 
very similar in terms of computational cost and NSE efficiency. Methods DEoptim, ga, direct and 
auglag, which only consider the upper and lower parameter bounds of the cost function and 
do not accept initial parameter values, show very little deviation in terms of model calls, since 
their ranges stay quite close to 18000, 8000, 20000 and 2000 model calls correspondingly. In 
consequence, these methods are able to locate a comparable region for the global minima 
regardless of the initial set of model parameters. Little or no distinction can be made among the 
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various calibration periods (Y4 to Y16), suggesting that in most cases, the computational cost is 
independent from the calibration period. The only exception is SCEoptim, which seems to require 
fewer model calls as the duration of the calibration period increases (between 700 and 7500). 
Nonetheless, SCEoptim is unreliable as it presents higher NSE dispersions when compared to 
the other global methods. The only two methods that stand out in terms of computational cost are 
auglag (global) and nls_lm (local). If computational resources were limited, nls_lm could provide 
a good local minimum in around 500 model calls, whereas auglag could do it in around 2000 
calls. Derived optimum parameters sets from these methods could then be used to run a more 
extensive global search using methods such as DEoptim, GenSA or csr2lm.In essence, the most 
effective local methods (except nls_lm) are as expensive as most global methods. Somehow, this 
discourages the use of local methods and promotes the use of global methods. Nonetheless, the 
effect of a lower-allowed maximum number of function evaluations (e.g. 10000, 5000 and 2000) 
for global methods should be studied, particularly for general operational purposes.

Conclusions and remarks
Eight global and eight local optimization methods were used to calibrate the HBV-TEC 
hydrological model. The following conclusions can be drawn:

•	 Regardless of the duration of the calibration period, global methods generally outperform 
local methods. Nonetheless, local methods nls_lm and hjk are as effective as most 
global methods. This suggests that the HBV-TEC model parameter space has a definite, 
converging global structure which cannot be fully described by some local methods.

•	 If different sets of initial model parameters are considered, local methods are generally 
more sensitive to getting trapped in local minima from where they are unable to escape. 
This is mostly the case for methods Rvmmin, bobyqa, and spg.

•	 Longer calibration periods promote better model performance and possibly higher 
parameter identifiability for both global and local methods. If only short observation 
periods are available (in the order of 4 to 8 years), they could still be used in optimization 
with sufficient confidence for some local and global methods.

•	 Based on the PCA analysis, most global methods show a comparable satisfactory 
performance, since they form clusters and highly correlate to one another. The only 
exception is method SCEoptim, which significantly deviates from the other global methods. 
Once again, local methods hjk and nls_lm have a comparable performance to most global 
methods.

•	 The most effective local methods (except nls_lm) are as expensive as most global 
methods. Somehow, this discourages the use of local methods and promotes the use of 
global methods.

•	 csr2lm, DEoptim and GenSA are the most effective global methods, whereas hjk and 
nls_lm are the most effective local methods.

•	 NSE efficiency seems to be independent from the number of model calls for both local 
and global methods regardless the duration of the calibration period, with the exception of 
method SCEoptim, which computational cost decreases as the duration of the calibration 
period increases. 

The results of this study represent valuable instruments for the operational water management 
of the upper Toro river catchment, including river and flood forecasting, potential reservoir 
operation downstream and climate change modelling. However, even when these findings are 
solid, one catchment is not enough to draw general conclusions.
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