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cas, Puebla, Mexico. E-Mail: joseantonio.martinez03@upaep.edu.mx
2 Universidad Popular Autónoma del Estado de Puebla, Departamento de matemáti-
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Abstract

First-mile problems have become a major problem for the automobile in-
dustry since moving cars from production plants to selling destinations is
characterized by using vehicle carriers with limited space. Although supply
chain processes have automatized last-mile operations to improve produc-
tivity and increase benefits, first-mile analysis has been widely ignored. For
example, in the automotive industry, cars are stored in parking lots until
they are demanded, which negatively impacts delivery times and increases
transportation costs. The previous issues impact the first-mile logistics of
the automobile industry to the detriment of copying with delivery times and
increasing the operation cost. In this paper, we deal with the previous issues
by modeling the movement of cars from the parking lot to the car carrier
as an optimal control problem. Considering that not all cars should leave
the parking lot, we search for conditions that guarantee the existence of a
unique optimal path when the cars’ requisition is uncertain. Theoretical re-
sults provide a closed-form solution that indicates the optimal path to fill the
car carrier in a time window. Such solutions allow us to study the impact of
exogenous parameters (such as the parking lot size, the starting point, and
marginal costs) on the behavior and features of the optimal path.

Keywords: calculus of variations, optimization, uncertainty, transshipment, optimal paths.

Resumen

Los problemas de la primera milla se han convertido en un problema im-
portante para la industria automotriz, ya que el traslado de los automóviles
desde las plantas de producción a los destinos de venta se caracteriza por el
uso de portaveh́ıculos con espacio limitado. Aunque los procesos de la cadena
de suministro han automatizado las operaciones de última milla para mejo-
rar la productividad y aumentar los beneficios, el análisis de la primera milla
ha sido ampliamente ignorado. Por ejemplo, en la industria automotriz, los
automóviles se almacenan en estacionamientos hasta que se demandan, lo
que impacta negativamente en los tiempos de entrega y aumenta los costos
de transporte. Lo anterior impacta la loǵıstica de primera milla de la in-
dustria automotriz en detrimento de copiar tiempos de entrega y aumentar
el costo de operación. En este art́ıculo, abordamos las cuestiones anteriores
modelando el movimiento de los automóviles desde el estacionamiento hasta
el portaveh́ıculos como un problema de control óptimo. Considerando que no
todos los autos deben salir del estacionamiento, buscamos condiciones que
garanticen la existencia de un único camino óptimo cuando la requisición
de los autos es incierta. Los resultados teóricos proporcionan una solución
de forma cerrada que indica la ruta óptima para llenar el portaveh́ıculos en
una ventana de tiempo. Estas soluciones nos permiten estudiar el impacto
de parámetros exógenos (como el tamaño del estacionamiento, el punto de
partida y los costos marginales) sobre el comportamiento y las caracteŕısticas
de la ruta óptima.

Palabras clave: cálculo de variaciones; optimización; incertidumbre; transporte;

caminos óptimos.
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1 Introduction

Transportation processes are unavoidable in logistics since they are required in
the entire production procedure. From manufacturing to customers and in the
presence of returns concerning reverse logistics, transportation plays a key role
in logistics since it constitutes 40-50% of logistics costs and 4-10% percent of the
products’ selling price. Hence, it is clear that transportation decisions directly
impact the logistics costs and other areas in the company [30]. Given transporta-
tion is constrained to cope with delivery times [18], it is a dynamic process that
requires planning efforts to guarantee the effectiveness and efficiency of logistics
processes [10]. So, forward-thinking organizations recognize the need to optimize
first-mile operations since they represent an opportunity to improve the compa-
nies’s competitiveness. Particularly, the first and last-mile delivery market is fore-
casted to reach 288.38 billion by 2030, with a compound annual growth rate of
6.12%. This growth is driven by the interest in e-commerce, declining shipping
costs, improved ground delivery vehicles, automated warehouses, and new supply
chain platforms [16].

Nowadays, first-mile transportation logistics plays a major role in fulfilling
delivery times since it is the first step to transporting products from the production
plant to a warehouse or distribution center. However, first-mile logistics is complex
because it is a dynamic pickup process under which disruptions may happen due
to cargo features such as volume and uncertain clients’ requisitions. So, optimizing
such problems requires implementing mathematical models related to static and
dynamic vehicle routing problems with packing constraints [16]. Moreover, it is
necessary to consider specific time windows and personalized shipments to cope
with clients’ expectations [7].

In the context of the Automotive Industry (AI), the dynamics of demand and
supply for cars are intertwined with uncertainties that pose a significant challenge
for AI’s logistics operations [11]. Dell proposes a model grounded in Possibil-
ity Theory to simulate users’ parking choice behavior and assess the impact of
various parking policies on the movement of cars, which subsequently influences
transportation from production plants to end customers. Notably, clearing park-
ing lots, where vehicles are stored, introduces delays due to spatial constraints,
limiting the flow of cars. In simpler terms, there isn’t enough room to efficiently
transfer cars from their parking positions to carriers [5]. Bahrami’s work explores
the potential of autonomous vehicles in optimizing land space utilization and min-
imizing parking space requirements, affecting the logistics of moving other vehicles
[23]. Consequently, this process delays delivery times and increases transportation
costs. Furthermore, the decision to transport a car from the parking lot depends
on specific customer requisitions [34].

In this paper, we delve into the intricate problem of filling a car carrier while
relocating cars from the production plant’s parking lot to a car carrier with limited
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capacity by considering uncertainty. It is worth distinguishing our approach from
[23], which primarily focuses on moving cars from a parking lot to a mother ship
within a restricted time frame with cost minimization as the core objective, but
without addressing the underlying uncertainty. Our modeling strategy adopts
principles from optimal control theory, aiming to minimize the cost of clearing the
parking lot within a fixed time frame. For simplicity, we assume the parking lot
is a two-dimensional rectangle, with each point corresponding to a parking slot.
Consequently, we tackle a dynamic optimization problem to identify the optimal
paths that minimize the cost of loading the car carrier. In this framework, the state
vector represents the car’s position, and the control variable denotes its velocity.

Not all cars need to be moved due to customer requisitions, so moving a car
is modeled as a random variable following a Bernoulli distribution. Consequently,
we seek a movement path that minimizes the expected cost of loading the car
carrier. By incorporating a polynomial cost function, we establish the existence of
a unique movement path that dictates which cars should be relocated within the
specified time frame. These movement paths are influenced by exogenous factors
that affect the process of cars leaving the parking lot.

Our key contributions revolve around the critical impact of clearing parking lots
in the initial logistics phase, ultimately affecting transportation costs. Reducing
these costs poses a substantial challenge for businesses, as transportation involves
various stakeholders with diverse objectives [12], affecting different layers of the
supply chain, including public policies, tariffs, transport modes, energy consump-
tion, and distance [33]. Consequently, optimization models play a pivotal role in
enhancing supply chain efficiency and coordination [31]. Efficient transportation
logistics bridge the gap between raw materials, finished products, and consumers,
further underlining their significance [32].

By considering the capacity of the car carrier, we can optimize the cost asso-
ciated with filling the car carrier. Numerous studies have proposed models and
algorithms to address analogous inventory management problems. For instance,
Nagasawa et al. developed a multi-item inventory model that accounts for truck
capacity, associated costs, and receiving inspection costs [26]. Aghajani and Kalan-
tar presented a methodology to model the interaction between parking lots and
distribution system operators in the energy and reserve market while considering
uncertainties related to load and wind power [1].

The supply chain is profoundly influenced by various factors, with the selection
of optimal paths for moving goods from one point to another playing a pivotal role.
This is why we employ diverse techniques such as operations research, heuristics,
and optimal control, with a particular emphasis on the latter due to its potential
to stabilize variables robustly [35]; [22] and optimize logistics planning. Other
studies aim to maximize service levels while minimizing costs within distribution
networks. Notable examples include [25], which employs a multi-objective opti-
mization approach, and [15], which utilizes genetic algorithms.
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vacating a parking lot under uncertainty 61

Economic variables are inherently intertwined with logistics, and the dynamic
nature of these systems introduces uncertainty due to demand fluctuations and
market changes. Mathematical models are useful tools for analyzing uncertainty
problems, as demonstrated by [28], which introduces a methodology for eliciting
logistic regression parameters with a single covariate. In these cases, a binomial
distribution is assumed. Optimizing the time required to clear a parking lot to
load a car carrier can be achieved through a cost function [14], which considers
factors such as the distance between the user and the parking lot, the distance
between the parking lot and service areas, the availability of parking spaces, and
the cost of parking for a given duration [21].

The calculus of variations serves as a valuable tool for analyzing dynamic phe-
nomena, offering a framework for solving problems related to dynamic systems, as
commonly encountered in physics and engineering. By optimizing functionals over
time, we can determine the optimal trajectory for a system while considering var-
ious constraints and variables [19]. For instance, [4] highlights its applicability in
enhancing nanostructures, [20] introduces a framework for optimizing energy uti-
lization through battery management in a cooperative environment using calculus
of variations, and [27] explores its use in optimizing functional parameters of com-
pacted modified soils for geotechnical applications. Additionally, [13] addresses
uncertainty in clearing parking lots and optimizes a polynomial cost function to
determine the cars that should be relocated.

The Bernoulli distribution, commonly employed in our study, quantifies the
number of successful events within a given time frame based on discrete events.
It postulates that for any random event, there are only two possible outcomes:
success or failure, with each experiment being independent. Our work extends the
scope of [23] by considering the uncertainty surrounding the decision of whether
to move specific cars.

The paper is organized as follows. Section 2 describes the optimal control
model we use to analyze the vacation of a parking lot when clients’ requisition list
is uncertain. Section 3 presents the optimal paths, while Section 4 discusses the
features of the previous paths. In Section 5, we provide some numerical examples
to illustrate the behavior of the optimal path. Additional numerical examples are
presented in the appendices.

2 Model

2.1 Basic elements

In this paper, we study the filling of a car carrierM in a time T given a requisition
list L; i.e., such a list has cars requested by customers of the parking lot. So,
our model is closely related to the one of [23] in the sense that cars move from
a parking lot P to M. However, not all cars belong to the requisition list. The
length of L equals the capacity of M, which we assume is finite.
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To simplify the analysis, the parking lot is the rectangular surface P = [0, a] ×
[0, b], where a, b ∈ R+. A parking slot is a point p = (x, y) ∈ P. Without loss of
generality, the carrier is located in the point (a, b), which we assume without loss
of generality.

Let S = P \ {(a, b)} be the set of all the parking slots that are not occupied by
the car carrier. Following the model of [23], each parking lot p ∈ S is occupied by
a car; so, whenever there is no confusion, p also refers to a car. We write p ∈ L if
the customers request the car p of the parking lot.

Notice that cars move from position p to (a, b) for each p ∈ S. Moreover, there
are no empty spaces in the parking lot, like streets, to move a car from its position
toM. Consequently, cars’ movement requires freeing space by moving other cars.
We use m to represent the number of movements to take a car from its position to its
carrier. So, m is a function from S to R+. Given that P is a rectangle, cars move
in vertical or horizontal directions. The total number of horizontal movements
is denoted by mX, while mY represents the total number of movements in the
vertical direction.

Assumption 1. For all p ∈ P, we consider that m(p) = mX(p) + mY (p).

Concerning the requisition list, freeing up space for movement involves the
participation of several drivers because cars are not stored as L requests. In
general, not all drivers know if a car should be carried out by M or not. Thus,
belonging toL is a random event that follows a binomial distribution f : [0, 1]→ R.

It is worth mentioning that moving a car implies using fuel and different drivers
to free up space. Thus, filling M induces costs such as the drivers’ salary and
fuel expenditure. Notice that freeing space depends on p and the maneuver’s
complexity to move p toM. So, m(p) determines the cost of moving cars from the
parking lot to the car carrier. For example, many cars need more drivers and fuel
to free space [8]. Let CM be the cost of moving cars from P toM. Given that not
all cars should be moved to M, let CS be the cost of rearranging the cars in the
parking lot.

2.2 The problem of filling M

In this paper, we study the problem of filling a car carrier when a requisition is
not common knowledge. In other words, there is uncertainty concerning the cost
of moving cars.

Remembering that belonging to L follows a binomial distribution, let Pr[R]
be the probability of belonging to the requisition list. At the same time, Pr[NR]
is the probability of not being requested. So, we have that Pr[NR] = 1 − Pr[R].
Also, it is worth mentioning that Pr[NR] refers to the event where cars are moved
to free up space, but they should be rearranged in the parking lot. Moreover,
Pr[R] implies moving a car p from P to M. Hence, the expected cost function is
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the following:

E[C(m(t))] = Pr[R]CM(m(t)) + Pr[NR]CS (m(t)).

Notice that filling the car carrier M, in the period [0,T ], plays a crucial role
in guaranteeing the effectiveness of the first mile logistics [6]. Aside from copying
with the filling time, the previous discussion points out that such an activity
induces costs that the company should minimize. So, we have to solve the following
minimization problem.

min
∫ T

0
[Pr[R]CM(m(t)) + Pr[NR]CS (m(t))] dt.

It is important to note that movements depend on the car’s location and ve-
locity. Thus, we can rewrite the movement functions as follows:

mx(t) = x(t) + ẋ(t) and my(t) = y(t) + ẏ(t). (1)

Consequently, the cost minimization problem can be written as the following
calculus of variations problem:

min
∫ T

0

[
Pr[R]CM(x + ẋ + y + ẏ) + Pr[NR]CS (x + ẋ + y + ẏ)

]
dt,

subject to

[
x(0)
y(0)

]
=

[
0
0

]
,

[
x(T )
y(T )

]
=

[
a
b

]
. (2)

3 Optimal paths

The optimization problem of equation 2 searches for minimizing the expected cost
function E[C(m)], which is not necessarily a linear function. Previously, we found
the optimal movement paths that minimize E[C(m)]. The function is detailed in
the following sections.

3.1 The expected cost function

The expected cost function weights the cost of leaving the parking lot with the cost
of remaining on it, summarized by the probability events R and NR, respectively.
Since it is the First, the expected cost function can be rewritten as follows:

E[C(m(t))] = Pr[R](CM(m(t)) −CS (m(t))) +CS (m(t)). (3)

Notice that CM depends on the total number of movements that drivers perform
to fill the car carrier. We simplify the analysis by assuming that such functions
are linear concerning horizontal and vertical movements.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 57–97, Ene – Jun 2024



64 j. a. mart́ınez. et al

Assumption 2. The total cost of moving a car from P to M is given by

CM(m) = Cx(mx) +Cy(my), (4)

where Cx and Cy indicate the cost of performing vertical and horizontal
movements, respectively.

As usual, we consider that horizontal and vertical movement follows a polyno-
mial behavior [24], [3]. Mathematically, we consider that

Cx(mx) =
mr

x

r(r − 1)
, and Cy(my) =

ms
y

s(s − 1)
,

where s and r are positive constants.

It is important to emphasize that all cars p < L need to be moved to free up
space, but at the same time, drivers should arrange them in the parking since
they remain in P. So, function CS summarizes the cost of freeing up space and
rearranging those cars that should stay in the parking lot. in this sense, we have
that

CS (m) = C2
x(mx) +C2

y (my). (5)

By the assumptions in equations 1, 4, and 5, the total cost function is rewritten
as follows:

C(m) = Cx(mx) +Cy(my) +C2
x(mx) +C2

y (my). (6)

Now, by using equation 3, the expected cost function is given by

E[C(m)] =
∑

k∈{x,y}

Pr[R]
[
Ck(mk) −C2

k (mk)
]
+C2

k (mk).

The previous expression allows us to rewrite the dynamic optimization problem 2
regarding the state variables x and y as:

min
∫ T

0

 ∑
k∈{x,y}

Pr[R]
[
Ck(k + k̇) −C2

k (k + k̇)
]
+C2

k (k + k̇)

 dt. (7)

3.2 General solution

The dynamic optimization problem in equation 2 searches for those optimal paths
that minimize the expected cost function of moving cars from their slot to the
point (a, b) in the period [0,T ]. Given that movements depend on the location and
the movement’s velocity, the optimization problem can be analyzed through the
Calculus of Variations theory lens.

Note that cost functions Cx and Cy are twice differentiable, and their derivatives
are continuous. So, we can find the optimal movements through the first-order

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 57–97, Ene – Jun 2024



vacating a parking lot under uncertainty 65

criterion. In other words, we need to solve Euler’s equation. First, we consider
that

Dx = Pr(R)
(

mr
x

r(r − 1)

)
+ 2

m2r
x

r2(r − 1)2 − Pr(R)
(
2

m2r
x

r2(r − 1)2

)
, (8)

Dy = Pr(R)
( ms

y

s(s − 1)

)
+ 2

m2s
y

s2(s − 1)2 − Pr(R)

2 m2s
y

s2(s − 1)2

 . (9)

By equation 7, the optimization problem is equivalent to minimizing two func-
tions regarding the state variables: one in terms of x and one in terms of y. So,
Euler’s equations establish the following system of equations:

∂D1

∂x
−

d
dt

(
∂D1

∂ẋ

)
= 0,

∂D2

∂y
−

d
dt

(
∂D2

∂ẏ

)
= 0.

Euler’s equation induces a linear system of differential equations that can be
expressed in terms of the probability of being requested and the parameters r, s.
Specifically, we have that


ṁx

ṁy

ẋ
ẏ

 =


v 0 0 0
0 w 0 0
1 0 −1 0
0 1 0 −1




mx

my

x
y

 , (10)

where:

v =
Pr(R)
r − 1

+
1

2(r − 1)
−

Pr(R)
2(r − 1)

, (11)

and

w =
Pr(R)
s − 1

+
1

2(s − 1)
−

Pr(R)
2(s − 1)

. (12)

Thus, the optimal movement paths are the solutions of the system 10. The
following theorem establishes our main result, which summarizes the optimal paths
of moving cars from P to the car carrier C.
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Theorem 3.1. Given system 10, the general solution of problem 2 is
ṁx

ṁy

ẋ
ẏ

 = K1evt


v + 1

0
1
0

 + K2ewt


0

w + 1
0
1

 + ...

K3e−t


0
0
1
0

 + K4te−t


0
0
0
1

 ,
(13)

where Ki ∈ R for all i = 1, . . . , 4.

Proof. The equation in 10 is a system of differential equations with constant coef-
ficients. Hence, we can find its solutions by proposing a path keλtV, where k, λ ∈ R
and v ∈ R4. Thus, we first compute the eigenvalues of the coefficients’ matrix:

A =


v 0 0 0
0 w 0 0
1 0 −1 0
0 1 0 −1

 .
These are the roots of the characteristic polynomial:

pol(λ) = det


v − λ 0 0 0

0 w − λ 0 0
1 0 −1 − λ 0
0 1 0 −1 − λ

 = 0.

In other words, the eigenvalues of matrix A are the solutions of the following
equation:

(λ + 1)(λ + 1)(λ − w)(λ − v) = 0.

Consequently, the matrix of coefficients A has the following eigenvalues: λ1 = v,
λ2 = w, λ3 = −1 and λ4 = −1. In other words, we have three different eigenvalues,
one with multiplicity equal to two. Now, we compute the eigenvectors associated
with each eigenvalue. In other words, we need to solve the following linear system:

v − λ 0 0 0
0 w − λ 0 0
1 0 −1 − λ 0
0 1 0 −1 − λ




e1
e2
e3
e4

 =


0
0
0
0

 , (14)

for each eigenvalue λ ∈ {λ1, λ2, λ3, λ4}. Concerning the eigenvalue λ1, we can rewrite
system 14) in the following way

0(e1) = 0,
(w − v)e2 = 0,

e1 + (−1 − v)e3 = 0,
e2 + (−1 − v)e4 = 0.
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By the previous system of equations, we have that e2 = e4 = 0, while e1 and e3 are
different to zero. Then, the eigenvector associated to λ1 is êλ1 = (e1(1 + v), 0, e1, 0),
where e1 ∈ R. As usual, we set the free term as e1 = 1, i.e., we have that

êλ1 =


v + 1

0
1
0

 .
Now, by substituting the eigenvalue λ2 into the system 14, the corresponding
eigenvector is found by solving the following equations system

(v − w)e1 = 0,
(0)e2 = 0,

e1 + (−1 − w)e3 = 0,
e2 + (−1 − w)e4 = 0.

Note that e1 = e3 = 0, while e2 and e4 are different to zero. Hence, we can write the
eigenvector associated to λ2 in terms of e2, i.e., we have that êλ2 = (0, e2(1+w), 0, e2),
where e2 ∈ R. As before, we set e2 equal to 1, which implies that

êλ2 =


0

w + 1
0
1

 .
Finally, we repeat the previous procedure to find the eigenvector associated with
λ3, which has a multiplicity equal to two. In other words, such an eigenvalue
has two associated eigenvectors, non-trivial solutions to the following equations’
system.

(v(−1))e1 = 0
(w − (−1))e2 = 0

e1 + (−1 − (−1))e3 = 0
e2 + (−1 − (−1))e4 = 0.

The first two equations show that e1 = e2 = 0. We substitute the previous solutions
into equations three and four and get that e3 and e4 are different from zero. Since
they are independent of each other, the two eigenvectors of λ3 are ê3 = (0, 0, e3, 0)
and ê4 = (0, 0, 0, e4), where e3, e4 ∈ R. By considering that e3 = e4 = 1, the
eigenvectors that we use for λ3 = −1 are the following

êλ3 =


0
0
1
0

 , and êλ4 =


0
0
0
1

 . (15)

Given the eigenvalues λ1, λ2, λ3 and λ4, and their eigenvectors êλ1 , êλ2 , êλ3 and êλ4 ,
the general solution of the system is the one in equation 13. □
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3.3 The initial value problem

Remembering the calculus of variations problem of equation 2 states initial and
ending conditions. At t = 0, we have that the slot of departure is (x0, y0), and
the slot of destination is (x(T ), y(T )) = (a, b) since the car carrier departs from the
parking lot at t = T . By Theorem 3.1, there is a unique solution concerning the
dynamic optimization of the cost of moving cars from P to C.

Specifically, equation 13 illustrates the optimal path (x∗, y∗) and the optimal
number of movements (m∗x,m

∗
y) that follow a car requested by the car carrier. Given

the initial and ending conditions, we use the previous paths to find the values of
constants K1,K2,K3, and K4.

By considering t = 0 and t = T , we get the following system of four equations

K1 + K3 = x0, (16)

K2 = y0, (17)

K1evT + K3e−T = a, (18)

K2ewT + K4Te−T = b. (19)

The previous equations system can be split into two systems with different un-
known variables. Equations 16 and 18 allows us to compute the value of K1 and
K3. Moreover, we can get the K2 and K4 from equations 17 and 19. By doing some
algebra, we get that

K1 = x0 −
ae−vT − x0

e−T (1+v) − 1
,

K2 = y0,

K3 =
ae−vT − x0

e−T (1+v) − 1
, (20)

K4 =
be−wT − y0

Te−T (1+w) .

We also normalize the period to simplify the visualization of the optimal paths.
In other words, we consider that time belongs to [0, 1] by considering the transfor-
mation t/T . Consequently, we can rewrite the optimal movement path as follows:

x∗(t) =

(
x0 −

ae−v − x0

e−(1+v) − 1

)
e

vt
T +

(
ae−v − x0

e−(1+v) − 1

)
e
−t
T ,

y∗(t) = y0e
wt
T +

(
be−w − y0

Te−(1+w)

)
te
−t
T . (21)

Hence, the optimal paths in expression (21) imply that the total number of move-
ments that we require to move cars from the parking lot to the car carrier is
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the following:

m∗(t) =

(
x0 −

ae−v − x0

e−(1+v) − 1

)
(v + 1)e

vt
T +

(
ae−v − x0

e−(1+v) − 1

)
e
−t
T + . . .

. . . + (w + 1)y0e
wt
T +

(
be−w − y0

Te−(1+w)

)
te
−t
T .

4 Model solution analysis

It is worth emphasizing the fact that assumptions 1 and 2 imply the existence
of a unique solution (x∗, y∗) that points out the path that cars should follow to
leave the parking lot. By equation 20, we observe that optimal paths depend on
the exogenous parameters v,w, x0, y0, a, b, and T . We generally observe that paths’
behavior depends on the relationship between the previous parameters.

First, we investigate the behavior of the horizontal position x∗ concerning time.

Proposition 4.1. Consider ∆x = (ae−v − x0)/(e−(1+v) − 1). The optimal path x∗ is
increasing for all t ∈ [0,∆x], where

∆x =
T

1 + v
ln

(
∆x

v(x0 − ∆x)

)
.

Proof. To find a domain’s condition where x∗ is increasing, note that we can rewrite
it as follows:

x∗ = (x0 − ∆x)evt/T + ∆xe−t/T .

The horizontal position increases as time passes by whenever the derivative con-
cerning time is positive. In other words, x∗ is monotonically increasing when

0 <
dx∗

dt
=

v
T

(x0 − ∆x)evt/T −
∆x

T
e−t/T .

By doing some algebra, we find that dx∗/dt > 0 if and only if

e(1+v)t/T >
∆x

v(x0 − ∆x)
.

By applying the logarithmic function on both sides of the previous inequality, we
get that

(1 + v)
T

t > ln
(

∆x

v(x0 − ∆x)

)
.

Therefore, x∗ is monotonically increasing when

t >
T

1 + v
ln

∆x

v(x0 − ∆x)
= ∆x.

□
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Now, we search for a domain where the vertical position y∗ monotonically
increases.

Proposition 4.2. Consider ∆y = (be−w − y0)/(Te−(1+w)). If ln y0/b < −w, then the
optimal path y∗ is increasing for all t ∈ [0,T ].

Proof. First, note that it is possible to rewrite y∗ as follows

y∗ = y0ewt/T + ∆yte−t/T .

Then, y∗ is monotonically increasing if

0 <
dy∗

dt

=
wy0

T
ewt/T −

t∆y

T
e−t/T + ∆ye−t/T

<
wy0

T
ewt/T + ∆ye−t/T .

From the previous expression, we get that

−∆ye−t/T <
wy0

T
ewt/T ,

−
∆y

wy0
< e(w+1)t/T .

Since e(w+1)t/T is greater than zero for all t ∈ [0,T ], the previous inequality
implies that y∗ is monotonically increasing if and only if ∆y is greater than zero.
By the definition of ∆y, the previous condition is guaranteed when

be−w − y0 > 0.

Therefore, we conclude that y∗ is monotonically increasing when

ln
y0

b
< −w.

□

Finally, it is worth recalling that the parameters a and b are associated with
the size of the parking lot P, which may impact the optimal paths in a significant
way. Intuitively, the movement position should be nearer to the parking lot exit
(represented by the point (a, b)) when the parking lot size increases. At each time
t, the following proposition shows the existence of a positive relationship between
x∗ and a. Also, the relationship between y∗ and b is positive.
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Proposition 4.3. Let (x∗, y∗) be the vector of optimal paths as in expression (21).
We have that:

1. The relationship between x∗ and a is positive.

2. The relationship between y∗ and b is positive.

Proof. By expression (21), the optimal path on the horizontal axis is

x∗(t) =
(
x0 −

ae−v − x0

e−(1+v) − 1

)
e

vt
T +

(
ae−v − x0

e−(1+v) − 1

)
e
−t
T .

At a time t, its derivative with respect to a is

∂x∗

∂a
= −

e−v

e−(1+v) − 1
evt/T +

e−v

e−(1+v) − 1

=
e−v

e−(1+v) − 1

(
e−t/T − evt/T

)
.

In the previous expression, note that

e−(1+v) − 1 < 0, e−v > 0, and e−t/T − evt/T < 0.

Hence, we conclude that

∂x∗

∂a
> 0.

Now, we take the derivative of y∗ with respect to b. By expression (21), we
have that

y∗(t) = y0e
wt
T +

(
be−w − y0

Te−(1+w)

)
te
−t
T .

Then, the derivative of y∗ with respect to b is

∂y∗

∂b
=

e−w

Te−(1+w) te
−t
T .

Since e−w, te
−t
T and Te−(1+w) are positive, we conclude that

∂y∗

∂b
> 0.

□
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5 Numerical examples

The previous section points out the importance of the relationship between the
exogenous parameters concerning the behavior of the optimal paths x∗ and y∗.
Propositions 4.1 and 4.2 show the non-existence of a general relationship that
implies a monotonic behavior in the period [0,T ]. Hence, this section provides
numerical examples to illustrate the behavior of optimal solutions.

As is usual in the literature, we consider that the cost function is quadratic;
that is to say, we assume that r = s = 2. Also, the time is normalized to T = 1
while the parking lot is P = [0, 40]× [0, 40]. First, we vary the initial conditions of
the problem of equation 2. Table 1 shows 10 possible initial slots that point out
the position of the first car to be moved to the car carrier.

Table 1: Initial conditions for simulation.

x0 y0

34 30
8 3
25 29
5 4
24 33
33 4
30 37
19 3
10 30
2 17

We use MATLAB R2022a software to illustrate the optimal solutions as we
change the exogenous parameters. MATLAB is a powerful software for analyzing
and solving optimal control problems [17, 2, 29, 9]. It provides a toolbox called
YALMIP and LMI, which can be used to model and solve optimization prob-
lems in control systems. MATLAB also offers numerical methods, such as Euler’s
method and second-order and fourth-order Runge-Kutta methods, for solving or-
dinary differential equations. Additionally, MATLAB can be used to implement
Pontryagin’s maximum principle for solving optimal control problems. Appendix
A summarizes the code we use to illustrate the optimal paths for moving cars from
the parking lot to the car carrier and the characteristics of the computer.

Figure 1 illustrates the path requested cars follow from the parking lot to the
car carrier. It is worth emphasizing that initial conditions in Table 1 change
the behavior of the optimal paths x∗ and y∗. If y∗ depends on x∗, paths are
monotonically increasing as the initial conditions are close to the X and Y axis. In
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Figure 1: Optimal Movements

contrast, paths follow a U−shaped behavior when the initial condition (x0, y0) is
located in the interior of the parking lot P.

The data must be analyzed with variations to understand the model’s perfor-
mance change. The changes proposed are variations in the terms r, s, and Px using
t = 0 with increments of 0.01 until the time T that is normalized.

Case 1.

The following tabulation is given at a certain instant of time, in this case at t = 0.5,
and the next conditions x0 = 30, y0 = 37, r = 2, s = 2 with the variation in the
probability term.

Table 2 shows the relative change in the Y axis and explains the type of graphics
in Figure 2.
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Table 2: Case 1.

Px X Y
0.1 33.2571 28.8195
0.2 33.0005 27.3421
0.3 32.7464 25.7570
0.4 32.4947 24.0578
0.5 32.2455 22.2378
0.6 31.9989 20.2900
0.7 31.7549 18.2069
0.8 31.5135 15.9808
0.9 31.2747 13.6033
1.0 31.0387 11.0659

0 10 20 30 40

X

0

10

20

30

40

Y

Case 1. Variation in the Probability term

Figure 2: Optimal Movements changing Px

Case 2

The following tabulation is given at a certain instant of time, in this case at t = 0.5
and the next conditions x0 = 30, y0 = 37, Px = 0.5, r = 2, with the variation in the
s term.
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Table 3: Case 2.

s X Y
3 32.2455 33.2258
4 32.2455 35.7364
5 32.2455 36.8193
6 32.2455 37.4186
7 32.2455 37.7982
8 32.2455 38.0598
9 32.2455 38.2509
10 32.2455 38.3966
11 32.2455 38.5114
12 32.2455 38.6040

Table 3 shows a steady behavior in X and a growth in Y is presented explaining
the type of graphics in Figure 3.
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40

Y

Case 2. Variation in the s term

Figure 3: Optimal Movements changing s value
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Case 3.

The following tabulation is given at a certain instant of time, in this case at t = 0.5
and the next conditions x0 = 30, y0 = 37, Px = 0.5, r = 2, with the variation in the
r term.

Table 4: Case 3.

r X Y
3 34.1735 22.2378
4 34.8447 22.2378
5 35.1852 22.2378
6 35.3910 22.2378
7 35.5288 22.2378
8 35.6275 22.2378
9 35.7017 22.2378
10 35.7594 22.2378
11 35.8057 22.2378
12 35.8436 22.2378

Table 4 denotes an increasing behavior in X and remains constant in Y explain-
ing the type of graphics in Figure 4

Figure 2 shows that the number of movements reduces as the probability of
allocating the car in the parking lot increases. In other words, uncertainty is a
decisive variable where the time to locate the car to be moved plays a major role
in coping with the clients’ requisitions. Figure 3, shows that as term s increases,
the movements in axis Y increase too, with a problem in finding an inflection point
as the values in x0 and y0 get bigger, finally Figure 4 gives an almost stationary
state as r value increases with very small changes in the remain variables.

The curves shown in Figures 2, 3 and 4 simulate the optimal paths due to
changes in the exogenous parameters of the model, which modifies the trajectories
and, therefore the arrival time at the parking lot exit. This contributes to defining
a logistics strategy to reduce uncertainty and thus carry out the transfer of vehicles
to the mother ship in less time.

It is important to recall that the previous numerical examples fix the parking
lot’s size together with the lot where the movement of cars initializes. However,
Proposition 4.3 emphasizes that previous parameters positively impact the optimal
movement path. Si, Appendix B provides additional examples where it is possible
to visualize the impact of the parking lot size. From Figure 11 to 16, in Appendix
B, the behavior of the optimal paths is very similar to those presented in Figures
2, 3 and 4. So, the further the car is from the exit point (a, b), we observe very
slight curved movements. On the contrary, the closer it is, the movements are
more erratic.
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Case 3. Variation in the r term

Figure 4: Optimal Movements changing r value
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6 Conclusions

The present paper presents a theoretical analysis concerning first-mile logistics
within the automotive industry by modeling the vacating of a parking lot in a
time window as an optimal control problem. We provide conditions under which a
unique path exists to minimize the cost of vacating the parking lot. Such conditions
allow us to find closed-form solutions for the movements that minimize the cost of
filling a car carrier when the cars to move are uncertain. The closed-form solutions
are affected by exogenous parameters related to the parking lot size and marginal
cost. So, we also present graphical representations of the optimal paths by setting
the values of the exogenous parameters.

The sensitivity analysis shows that the number of movements reduces as the
probability of allocating the car in the parking lot increases. So, uncertainty is
decisive in coping with clients’ requisitions since it modifies the optimal movement
path. In other words, the movement of cars is nearer to the parking lot when the
probability of not being listed in the clients’ requisition increases. Intuitively, the
parking lot prefers to vacate its closest part to the car carrier when most cars are
not requested.

Concerning marginal cost parameters, both parameters have a positive rela-
tionship with the location of movement. So, the cost of vacating the parking lot
is minimal when the cars are near the point where the car carrier is located. As
before, larger marginal costs drive movement to the frontiers of the parking lot to
reduce the total cost.

The main limitation of our study is the lack of data to compare our theoretical
results with the empirical experience. In future works, we pretend to calibrate the
parameters of our model by collecting data from parking that needs to be vacated.
This last exercise is out of the scope of our research, given the permits it requires,
aside from coordinating agents of different companies. However, to provide some
insights about the model implications with collected data, Appendix C analyzes the
variation between data provided at different parking lot sizes with the probability
of appearing or not appearing on the list of cars to pick up through the ANOVA
methodology. As expected, the previous variables generate a significant impact on
the optimal, which means that the null hypothesis is rejected.

Finally, future works are related to two open questions that this paper does
not address. The first one is related to the capacity of the car carrier, which can
be modeled as an isoperimetric problem. The second one is the calibration of the
model by considering real data.
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Appendix A

The characteristics of the computer are listed below:

• Processor Intel(R) Core(TM) i7-6600U

• CPU @ 2.60GHz at 2.80 GHz

• RAM installed 16.0 GB, 64 bits, x64

The Matlab code used to simulate:

clc;

close all;

a=40;

b=40;

T=1;

s=2;

r=2;

Px=0.5;

v=Px.*(1./(r-1))+(1-Px).*(1./(2.*(r-1)));

w=Px.*(1./(s-1))+(1-Px).*(1./(2.*(s-1)));

t=0:0.05:T;

n=10;

X1=[];

Y1=[];

dx=[];

dy=[];

x01=[];

y01=[];

for i=1:n

x0=randi(40);

y0=randi(40);

k3=(a.*exp(-v)-x0)./(exp(-(1+v))-1);

k1=x0-k3;
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k4=(b*exp(-w)-y0)./(T.*exp(-(1+w)));

k2=y0;

X=(v+1)*k1.*exp(v.*t./T)+k3.*exp(-t./T);

Y=(w+1)k2.*exp(w.*t./T)+k4.*t.*exp(-t./T);

dX=(exp(-t./T).*(x0 - a*exp((Px - 1)/(2.*r - 2) -

Px./(r - 1))))/(T.*(exp((Px - 1)/(2.*r - 2) -

Px./(r - 1) - 1) - 1))-(exp(-(t.*((Px - 1)./

(2.*r - 2)-Px./(r - 1)))./T).*

(x0 + (x0 - a.*exp((Px - 1)./(2.*r - 2) -

Px./(r - 1)))./(exp((Px - 1)./ (2.*r - 2) -

Px./(r - 1) - 1) - 1)).*((Px - 1)./(2.*r - 2) -

Px./(r - 1)))./T;

dY=(t.*exp(Px./(s - 1) - (Px - 1)./(2.*s - 2)

+ 1).*exp(-t/T).*(y0 - b.*exp((Px - 1)./(2*s - 2)

- Px./(s - 1))))/T^2 - (y0.*exp(-(t.*((Px - 1)./

(2*s - 2) - Px./(s - 1)))./T).*((Px - 1)./

(2.*s - 2) - Px./(s - 1)))./T - (exp(Px./(s - 1)

-(Px - 1)./(2.*s - 2) + 1).*exp(-t./T).*(y0 - b.*

exp((Px - 1)./(2.*s - 2) - Px./(s - 1))))./T;

X1=[X1 X];

Y1=[Y1 Y];

dx=[dx dX];

dy=[dy dY];

x01=[x01 x0];

y01=[y01 y0];

A=[X1' Y1' dx' dy'];
mx=(v+1).*X;

my=(w+1).*Y;

mt=mx+my;

figure (1)

plot(X,Y,'-o', 'MarkerIndices',1:40:length(Y),
'MarkerEdgeColor',
'black','MarkerFaceColor','black',
'MarkerSize',8,LineWidth=2)
xlabel('X')
ylabel('Y')
ax = gca;

ax.FontSize = 15;

grid on

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 57–97, Ene – Jun 2024



vacating a parking lot under uncertainty 81

title('X vs Y','FontSize',16)
hold on

figure (2)

plot(dX, dY, '-o', 'MarkerIndices', 1:40:length(Y)

,'MarkerEdgeColor',
'black','MarkerFaceColor','black', 'MarkerSize',
8,LineWidth=2)

xlabel('dX')
ylabel('dY')
ax = gca;

ax.FontSize = 15;

title('dX vs dY','FontSize',16);
hold on

figure (3)

plot (t, mx, '-o', 'MarkerIndices',1:40:length(Y),
'MarkerEdgeColor',
'black','MarkerFaceColor','black', 'MarkerSize',
8,LineWidth=2)

xlabel('t')
ylabel('mx')
ax = gca;

ax.FontSize = 15;grid on

title('X Axe Movements','FontSize',16)
hold on

figure (4)

plot (t,my, '-o', 'MarkerIndices',1:40:length(Y),
'MarkerEdgeColor',
'black','MarkerFaceColor','black', 'MarkerSize',
8,LineWidth=2)

xlabel('t')
ylabel('my')
ax = gca;

ax.FontSize = 15;

grid on

title('Y Axe Movements','FontSize',16)
hold on

end

Appendix B

These simulations were computed with two different initial points and show the
difference between each sector in the graphics. The derivative plots were also
included. The condition is the same that was used in the first simulation proposed
with variations in the terms r, s, Px and the size of the P = [100, 100].
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Figure 5: Variations at Point (5, 4) in Case 1
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Figure 6: Variations at Point (5, 4) in Case 2
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Figure 7: Variations at Point (5, 4) in Case 3

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 57–97, Ene – Jun 2024



vacating a parking lot under uncertainty 85

0 5 10 15 20 25 30 35 40

X

0

10

20

30

40

Y

Variation in the Px term

20 30 40

dX

10

20

30

40

X

First X Derivative

0 20 40

dX2

10

20

30

40

X

Second X Derivative

-100 0 100

dY

15

20

25

30

35

40

Y

First Y Derivative

0 100 200

dY2

15

20

25

30

35

40

Y

Second Y Derivative

Figure 8: Variations at Point (10, 30) in Case 1
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Figure 9: Variations at Point (10, 30) in Case 2
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Figure 10: Variations at Point (10, 30) in Case 3
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Figure 11: Variations at Point (30, 37) in Case 1 with P = [0, 100] × [0, 100]
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Figure 12: Variations at Point (30, 37) in Case 2 with P = [0, 100] × [0, 100]
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Figure 13: Variations at Point (30, 37) in Case 3 with P = [0, 100] × [0, 100]
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Figure 14: Variations at Point (74, 87) in Case 3 with P = [0, 100] × [0, 100]
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Figure 15: Variations at Point (74, 87) in Case 3 with P = [0, 100] × [0, 100]
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Figure 16: Variations at Point (74, 87) in Case 3 with P = [0, 100] × [0, 100]

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 57–97, Ene – Jun 2024



94 j. a. mart́ınez. et al

Appendix C

In this appendix, we analyze the variations that may arise in our results when
the size of the parking changes and the initial location is not the origin (0, 0).
We use the ANOVA methodology to determine if there is a significant difference
by comparing three groups. The first one considers data generated by a parking
lot [0, 40] × [0, 40] at initial location (30, 37), the second group with a parking size
[0, 100]×[0, 100] at initial location (30, 37), and the third group considers a parking
lot [0, 100] × [0, 100] at starting location (90, 97). the ANOVA’s results point out
the variability between groups for all probabilities from 0 to 1 at all simulated
times t ∈ [1,T ], with time increments equal to 0.01.

Table 5 summarizes the ANOVA’s results. We observe that the F-value is
greater than the f critical value, while the p-value equals zero. Hence, the null
hypothesis is rejected; that is to say, there is a significant difference between groups
when the parking lot size and initial location vary.

Table 5: ANOVA.

Source of
variation

SS df MS F P-value F critic

Sample 1267090.38 2 633545.19 6535.99 0 2.99
Columns 10081479.74 3 3360493.24 34668.68 0 2.60
Interaction 1500779.61 6 250129.93 2580.47 0 2.09
Whithin 1173648.645 12108 96.93
TOTAL 14022998.39 12119
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[18] M. G. Kay, K. Karagul, Y. Şahin, G. Gunduz, Minimizing Total Logistics
Cost for Long-Haul Multi-Stop Truck Transportation. Transportation Re-
search Record 2676(2022), no. 2, 367–378. doi: 10.1177/03611981211041596

[19] L. Komzsik, Applied calculus of variations for engineers. CRC Press, 2019.
doi: 10.1201/9781315215129

[20] J. Leithon, S. Werner, V. Koivunen, Energy optimization through cooperative
storage management: A calculus of variations approach. Renewable Energy
171(2021), 1357–1370. doi: 10.1016/j.renene.2021.02.093

[21] Y. Li et al., A Game Theoretic Approach for Parking Spot Search with Lim-
ited Parking Lot Information. 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC). IEEE. 2020, 1–6. doi: 10.1109/
ITSC45102.2020.9294257

[22] C. Lima, S. Relvas, A. Barbosa-Póvoa, J. M. Morales, Adjustable robust
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