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226 R. ALVARADO — A. ANGULO — M. VARGAS

Abstract

In this paper, two exact solutions of the Einstein’s equations are ob-
tained for an anisotropic and homogeneous symmetry of Petrov Type D,
the difference between both solutions lies in how relevant is the expansion
that is presented initially, either on an axis or on a perpendicular plane.
Both solutions represent a mixture of two fluids with minimum interaction:
dark energy (P = −µ) and radiation (P = µ/3). The singularities and
the influence that these fluids have on this metric are studied; the Hubble
parameters, the deceleration parameter and the role that these fluids repre-
sent on them are determined and analyzed. Additionally, their temperature
and the role that both play on this magnitude are determined.

Keywords: cosmology; exact solution; Einstein; temperature; Hubble;
deceleration parameter; Kretschmann; singularity.

Resumen

En este trabajo se obtienen dos soluciones exactas de las ecuaciones
de Einstein para una simetría anisotrópica y homogénea del Tipo Petrov
D, la diferencia entre ambas soluciones radica en que tan relevante es la
expansión que se presenta inicialmente, ya sea en un eje o en un plano
perpendicular. Dichas soluciones representan una mezcla de dos fluidos
con mínima interacción: energía oscura (P = −µ) y radiación (P = µ/3).
Se estudia las singularidades y la influencia que estos fluidos tienen en esta
métrica; así como el parámetro de Hubble, el parámetro de desaceleración
y la influencia que estos fluidos tienen en ellos. Además, se determina su
temperatura y el papel que ambos juegan en esta magnitud.

Palabras clave: cosmología; solución exacta; Einstein; temperatura; Hubble;
parámetro de deceleración; Kretschmann; singularidad.

Mathematics Subject Classification: 83C15, 83C56, 83C75.

1 Introduction

The investigations related to the cosmic microwave background gathered by
the COBE, WMAP and PLANK satellites, the accelerated expansion of the
Universe, and all possible scenarios (states) in which the Universe could have
passed, have generated a greater interest in Cosmology. These topics has been
discussed in [1] in detail.

There are several studies of cosmological models in which the mixture of two
or more fluids is considered, among them there is a model with three fluids with
a FRW metric for a flat space-time [19]; for a mixture of radiation and matter it is
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studied the in-homogeneous cosmological solutions during the radiation era for a
Lemaître-Tolman-Bondi metric in [18]; in [17] it has been studied two barotropic
fluids without mutual interaction for dark energy models in a FRW universe, and
in the same way [13] with this symmetry, it is analyzed a universe with dust
and radiation fluids. Also, there have been efforts for quadratic state equations
with three non-null terms representing vacuum energy, radiation and dark energy.
Outside of the classic General Relativity theory in [6], it is developed a non-local
modification of the theory with a new action S which allows to find cosmological
solutions that represent interference properties between a radiation fluid and a
dark energy one. In [4] cosmological solutions for an isobaric scalar field are
presented for a homogeneous spacetime in a Petrov D symmetry. Using this
symmetry, there has been obtained already a group of cosmological solutions for
several types of fluids (see [1]) and it is the one used in this study to determine
relevant cosmological functions for a particular mixture of fluids.

Such an analysis permits multiple scenarios to be studied within the same
cosmological model, and it is used as a foundation in the investigation of possi-
ble characteristics by incorporating fluids, that partly represent the dark matter.
Related to this line of investigation, here it is presented the solutions of a mixture
of fluids with minimal interaction between them.

2 Symmetry, Einstein’s equations and the solutions

The symmetry that will be used in this work is the anisotropic and homogeneous
of Petrov Type D, which has the form [1]

ds2 = Fdt2 − t2/3K(dx2 + dy2)− t2/3

K2
dz2, (1)

where F y K, are functions of t.
The components of the Einstein tensor (Gβα = Rβα − 1

2δ
β
αR) different from

zero, of (1), are

G0
0 =

4K2 − 9 t2K̇2

12t2K2F
, (2)

G1
1 = −

3KtK̇
(

2F−Ḟ t
)

+ 3Ft2
(

2KK̈−5K̇2
)

+4K2
(
Ḟ t+F

)
12t2K2F 2

, (3)

G2
2 = G1

1 = −G
3
3

2
+

9Ft2K̇2 − 4K2Ḟ t− 4K2F

8t2K2F 2
, (4)

where the dots over the functions represent time derivates.
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The model of the perfect fluid used in cosmology represents a fluid without
viscosities, isentropic (P = P (µ)) and without shear stress, which could be
written in the following way

Tαβ = (µT + PT )uαuβ − gαβPT , (5)

where Tαβ is the energy momentum tensor of the mixture of fluids with minimal
interaction, uα the tetradimensional velocity, gαβ the metric tensor, µT and PT
the total energy density and the total pressure of the mixture of fluids, respec-
tively.

The form of the equation of state for the mixture of fluids that will be used is

PT = Peos + Prad · µT = µeos + µrad, (6)

where µeos and µrad represent the energy densities of dark energy and radiation
fluids, respectively, and Peos and Prad their respective pressures.
It will be considered a fluid with a tetra-dimensional velocity uα = (u0, 0, 0, 0);
hence, the components of the energy momentum tensor (5), different from zero,
are T 0

0 = µT = µeos + µrad and T 1
1 = T 2

2 = T 3
3 = −PT implying that from

Einstein’s equations Gβα = κT βα must be satisfied that G1
1 = G3

3; thus, of (3) and
(4) it is obtained

K̇K
(

2F − Ḟ t
)
− 2Ft

(
−KK̈ + K̇2

)
= 0, (7)

therefore

K = K0e
C1

∫
F1/2

t
dt, (8)

without losing generalities, the constant K0 in (8) will be considered equal to 1
and C1 = ±2/3; for each possible value of C1, a different model is obtained.

In [1], it was determined that the solution of fluids with lineal equations of
state between P and µ of type P = λµ, for the anisotropic symmetry of Petrov
D, gives a common result that

µλ =
Cλ
t1+λ

and Pλ =
λCλ
t1+λ

,

where Cλ is a constant of integration that represents the type of fluid depending
on the value of λ. For the case under analysis, it will be defined as λ = −1 and
C−1 = Λ for dark energy and λ = 1/3 and C1/3 = R for radiation according
to the equations of state usually analyzed in the literature. Once replaced these
values, the following equations for the combined fluids are found

PT = −Λ +
R

3t4/3
, (9)
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and the density µT

µT = Λ +
R
t4/3

. (10)

From Einstein’s equations Gβα = κT βα , with (8), (6) and from the equality
Tµν;µ = 0 it is obtained, for any C1, that the solution of F , matching (10)
with (2) is

F =
(

3 Λt2 + 3 t2/3R+ 1
)−1

, (11)

where Λ > 0 andR > 0; by cancelling one of these parameters, only one of the
fluids remain. The numerical values for Λ andR (without units) in a unit of time
are equivalent to the energy density of the respective fluid.

The function K in (8), once solved in its integral, takes the following form

K = e
±8
√

3Λ
C2

√
A1
C1

Π

(
1/12

√
2

√
−i122/3√3B1

F1
,
2 i
√

3
√

F1
C2

,
√
2

√
i
√

3F1
C1

)
±2/3σ0

, (12)

where

A1 =

(
√

3

√
4R3 + 3 Λ

Λ
− 3

)
Λ2, (13)

B1 =
3
√

12A1
2/3 + i

3
√

12
√

3A1
2/3 + 12 Λt2/3 3

√
A1 − Λ122/3R

+iΛ
√

3122/3R, (14)

C1 = i
3
√

12Λ
√

3R+ i
√

3A1
2/3 − 3

3
√

12RΛ + 3A1
2/3, (15)

C2 = i
√

3A1
2/3 + i

3
√

12Λ
√

3R+ A1
2/3 − 3

√
12RΛ, (16)

F1 =
3
√

12RΛ + A1
2/3, (17)

σ0 = 8

√
3Λ

C2

√
A1

C1
Π×

×

√2

12

√
−i122/3

√
3B0

F1
,
2 i
√

3
√
F1

C2
,
√

2

√
i
√

3F1

C1

 , (18)

B0 =
3
√

12A1
2/3 + i

3
√

12
√

3A1
2/3 + 12 Λ 3

√
A1 − Λ122/3R+

iΛ
√

3122/3R. (19)

The function Π(ν, n,m) is an incomplete elliptic integral of the third kind,
where ν is the sine of the amplitude, n is the characteristic, andm the parameter.
Even though the above solution seems to be complex, it is possible to eliminate
the complex term through the constant of integration σ0.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 225–238, Jul–Dec 2022
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2.1 Analysis of the function K(t) whenR = 0

From (8), the function K(t) can be integrated considering only dark energy
(R = 0) using the function of F (t) from (11). The result is

K± = e
± 2

3
artanh

(
1√

3 Λ t2+1

)
+c±1

, (20)

where c±1 is a constant of integration that depends of the sign in K; simplifying
and making the following change in the time coordinate t = sinh

(
n
√

3Λ
)
/
√

3Λ,
the following expression for K(t) is found

K± = D±1

cosh
(
n
√

3Λ
)
− 1

cosh
(
n
√

3Λ
)

+ 1

±1/3. (21)

In this case, D± is an integration constant; that based on [1] is defined as
(
√

3Λ/4)∓1/3. By using (20), it is possible to approximate the value of K when
t −→∞ and it is found that

K± ≈ D±e
∓2/9

√
3√
Λt . (22)

This expression is also obtained if K is approximate for nonzero Λ and R,
but with a different integration constant. This demonstrates that for long periods
of time, the dark energy term dominates the Universe in both models in the
same way. Furthermore, if the limit for this last expression is calculated towards
infinity, then, a constant value forK is reached and a solution for a homogeneous
and isotropic spacetime with dark energy of the FRW flat type is obtained. This
is independent of the sign that is used in (8).

2.2 Analysis of the function K(t) when Λ = 0

By using the same function in (8), but this time considering radiation only (Λ =
0) employing the equation of F (t) from (11), the following solution for K(t)
is found

K± = E±

(√
3 t2/3R+ 1± 1

)2
3t2/3R

, (23)

where E± is the constant of integration that depends on the sign selected in
K. When t −→ 0, it is possible to approximateK(t) to the following expression

K± ≈ E±
(

3R
4

)±1
t±2/3, (24)
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If this is compared to [1](equation 61), then, the constant is defined as
E± = (3R/4)∓1. Considering the positive values (+) of the function (24), it
is found that a part of the metric space extends over the x, y plane and when the
negative value is taken (-), the part of space of the metric lengthens along z and
shrinks over the x, y plane. Additionally, this expression for K is the same for
the mixed model if time tends to zero except for the constant E which demon-
strates how the model with both fluids is reduced to the radiation one if it is close
to t = 0.

3 Kretschmann invariant and singularities

To study the possible singularities of a given spacetime, the Kretschmann invari-
ant is used. The importance of this invariant has been discussed in [1]. For the
solutions found, the invariant has the form

Krets = RαβγτR
αβγτ = (25)

72 t2R2 ± 32
√

3 t2Λ + 3 t2/3R+ 1t2/3 + 72 t14/3Λ2 + 32 t2/3 + 48 t8/3Λ + 48 t4/3R
27 t14/3

,

The positive sign is taken when C1 = 2/3 and the negative one if C1 =
−2/3. From the Kretschmann invariant (25), it is known that a singularity exists
in t = 0 for any value of C1. For the value of C1 = 2/3, the singularity is
equivalent to the Kasner ED1 (with an order depth of t−4) and if C1 = −2/3, it
is a singularity with a depth of t−8/3 which is present due to the radiation fluid.

4 Hubble parameter and deceleration

The Hubble parameter H is defined for the FRW flat model solution as
H = Ȧ/A where A is a scalar factor. Considering the Einstein’s equations

Rµν − 1/2gµνR = kTµν , (26)

and taking into account the energy momentum tensor defined in (5) together with
the same lineal state equation P = λµ, it is found thatA(t) ≈ t2/3(λ+1)−1

; then,
the Hubble parameter is defined as

H =
2

3(λ+ 1)t·
. (27)
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For the Bianchi-I symmetry,

ds2 = dt′
2 − a2dx2 − b2dy2 − c2dz2. (28)

The Hubble parameter is defined as follows [2],

H =
((abc)1/3)′

abc
, (29)

where (′) represents derivate with respect to t′; a, b y c are scalar factors which
depend of t′, and the coordinates x,y and z respectively. Such parameter can be
defined in general terms for a metric of the type

ds2 = edt2 −A2dx2 −B2dy2 − C2dz2, (30)

in the following way

H =
((ABC)1/6)·

e(ABC)1/6
, (31)

where e, A, B and C are functions of t and the dot over the function represents
the derivative with respect to time. Based on this, the following solution for the
Hubble parameter related to the metric under study is found

H =

√
3 Λt2 + 3 t2/3R+ 1

3t
, (32)

where the components of the metric tensor have been considered A, B and C of
(30) for the metric (1).

In regards to the deceleration, it is defined for the FRW solution as

q = −ÄA/Ȧ2. (33)

For the FRWL flat model, it is found that A(t) ≈ t2/3(λ+1)−1
; therefore,

q = 1/2 + 3/2λ. (34)

For the Bianchi-I symmetry, it is defined in the same way, but considering that
A → (abc)1/3, then, it can be written as

q = −1− Ḣ

H2
. (35)

Using the respective values for the metric under study, it is obtained that

q = −3 Λt2 − 3 t2/3R− 2

3 Λt2 + 3 t2/3R+ 1
. (36)
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4.1 Results analysis for the Hubble parameter

The Hubble parameter, in the case of the combination of both fluids (Λ 6= 0 and
R 6= 0), tends to infinity when t → 0 (it is independent of the value of C1);
it has the same behaviour even though one of the fluids is eliminated. When
t → ∞, H → H0, this tendency is present with both fluids or with dark energy
only (R = 0). For these two cases, H0 =

√
3Λ/3 which demonstrates how the

dark energy term dominates the late Universe’s expansion. If only radiation is
present (Λ=0), then, it is found that H → 0.

4.2 Results analysis for the deceleration parameter

The deceleration parameter q tends to q → −1 when t → ∞ in combination of
both fluids or with dark energy only (R = 0), and it is independent of the value
of C1. This indicates that the universe accelerates after an era of deceleration
in accordance with recent observations of distant objects [16, 10, 8]. If only
radiation is present, (Λ = 0) the parameter q → 1 indicating a permanent process
of deceleration. If t → 0, q → 2; which imply a collapsed process for the
mixture of fluids at the beginning. This same trend is kept if only dark energy is
present (R = 0) or only radiation (Λ = 0). (See Figure 1).

The time, in which the deceleration parameter becomes zero (described in
(36)), can be defined as follows

t1 =
2
√

6

9

(√
3R
Λ

cos

(
1

3
arccos

(√
3Λ

R3/2

)))3/2

, (37)

and it represents the moment of time when the Universe expansion is not accel-
erating or decelerating. This point can be observed in the intersection function
with the abscissa axis in the Figure 1 where the value of q changes from positive
to negative representing the transition from deceleration to acceleration during
the expansion.
In the case, only dark energy is present, it is considered R = 0 and with the
equation (36), the time for q = 0 is

t2 =
1

3

√
6

Λ
, (38)

and with only radiation with Λ = 0, there is no solution. Then, only decelerated
expansion is present during all time of the Universe.
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Figure 1: Curve of the deceleration parameter (q) with respect to time.

5 The temperature

In relation to thermodynamics in cosmological solutions with a symmetry of
Petrov D, some possibilities have been discussed and analyzed in [3], where it
has been determined with the symmetry of FLRW type that

dPT
µT + PT

=
dT

T
, (39)

where T is the temperature of the mixture of fluids.
From (39), (10) and (9), it is obtained that

T =
T0

t1/3
, (40)

where T0 is a constant of integration. From (40), it is observable that for the
mixture of both fluids when the time t −→ 0, the temperature T −→∞ and this
result in the model is independent from the fluids constants. For bigger times
as t −→ ∞, the temperature T −→ 0. When it is considered in (39) only
radiation (Λ = 0), the same result is found as in (40), but if the same procedure
is followed for dark energy (R = 0), this solution is not found. Therefore, it can
be concluded that the dependency of the temperature on time, in the mixture of
these fluids, is determined by radiation.
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6 Conclusions

In this study, solutions for a mixture of fluids were obtained; dark energy and
radiation with minimal interaction and the possible combinations of both were
analyzed. The model results were validated in the upper and lower time limits
if there is one fluid, either dark energy or radiation, in accordance with previous
studies [1]. It was determined that if t −→ 0 or t −→ ∞, the approximation of
K for both fluids shows the same dependency from the time, with the only differ-
ence of a multiplying constant, to the model with only radiation (in t −→ 0) or
dark energy (in t −→ ∞) respectively. Also, it was found that when the limit is
calculated t −→ ∞, an isotropization of both fluids arises and if compared with
the model with only dark energy, the only difference is the constant mentioned
above.

It was found that for both models there is a singularity at t = 0 with an order
depth of t−8/3 if C1 = −2/3 and a depth of t−4 (Kasner type ED1) if C1 = 2/3.

For the Hubble parameter (H), it was estimated that if t −→ 0 for both
fluids or only one of them, H −→ ∞ and if t −→ ∞, then, H −→ H0, where
H0 =

√
3Λ/3.

The deceleration parameter q → −1 if t→∞ in combination of both fluids
or if only dark energy is present (R = 0), this indicates an accelerated ex-
pansion of the universe in accordance with observations of Type la Supernovas
[15, 14, 9]. If there is only radiation, (Λ = 0) the parameter q → 1 indicates a
deceleration process.
It was established that if t→ 0, q → 2 which implies a deceleration process for
the mixture of both fluids at the beginning. This same situation is shown if there
is only dark energy (R = 0) or only radiation (Λ = 0).

It was also defined the time instant (t1) if the deceleration parameter is zero,
representing the moment when there is no acceleration or deceleration and there
is a transition among them. The time (t1) was also calculated in the case of
only dark energy, since when there is only radiation a decelerated expansion is
experienced all the time. This transition was corroborated in the mid to late
1990s by the Supernova Cosmology Project and the High-z SN Search teams
with Hubble’s data of Type la Supernovas [16, 15, 14] and later by others inves-
tigations with data such as that of galaxy clusters [10].

It was demonstrated that the temperature, for the model with both fluids,
shows a behaviour with high values at the beginning, but then T → 0 if t→∞.
The same result is obtained if there is only radiation (Λ = 0) which indicates the
dominance of this parameter for the temperature. The existence of an isotropic
radiation bath that permeates the entire Cosmos known as the Cosmic Microwave
Background (CMB) discovered in 1964 [7] supports the theory of a universe with
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236 R. ALVARADO — A. ANGULO — M. VARGAS

high temperatures at the beginning and then cooling off as it expands. The Cos-
mic Background Explorer satellite (COBE), launched in 1992 to look for minor
changes in CMB temperature [12], and the Wilkinson Microwave Anisotropy
Probe spacecraft (WMAP), launched in 2001, have both corroborated this. Ac-
cording to the WMAP survey, CMB is nearly identical in all directions [5].

Finally, it is worth noting that observations made by investigations such as
[11] suggest evidence that challenges the well know Cosmological Principle,
which shows the importance of pursuing more realistic models in accordance
with the observable universe.

Acknowledgments

The authors would like to express their gratitude to the referees, whose recom-
mendations and comments contributed to improve the paper’s quality, as well as
other reviewers for their valuable contributions to the article’s content.

Financial support

This work was supported by the Research Vice-Rectory of the University of
Costa Rica and developed in the free time of the authors.

References

[1] R. Alvarado, Cosmological exact solutions set of a perfect fluid in an
anisotropic space-time in Petrov type D, Advanced Studies in Theoretical
Physics 10 (2016), no. 6, 267–295. Doi: 10.12988/astp.2016.6311

[2] R. Alvarado, The Hubble constant and the deceleration param-
eter in anisotropic cosmological spaces of Petrov type D, Ad-
vanced Studies in Theoretical Physics 10 (2016), no. 8, 421–431.
Doi: 10.12988/astp.2016.6930

[3] R. Alvarado, Thermodynamics and small temporal variations in the
equations of state of anisotropic cosmological models of Petrov type
D, Advanced Studies in Theoretical Physics 11 (2017), no. 1, 9–17.
Doi: 10.12988/astp.2017.6932

[4] R. Alvarado, Exact cosmological solutions of isobaric scalar fields in
space-times: anisotropic of the type of Petrov D and isotropic homoge-
neous, Advanced Studies in Theoretical Physics 12 (2018), no. 7, 319–333.
Doi: 10.12988/astp.2018.8937

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 225–238, Jul–Dec 2022

https://doi.org/10.12988/astp.2016.6311
https://doi.org/10.12988/astp.2016.6930
https://doi.org/10.12988/astp.2017.6932
https://doi.org/10.12988/astp.2018.8937


COSMOLOGICAL EXACT SOLUTIONS OF PETROV TYPE D . . . 237

[5] C.L. Chang, K.M. Huffenberger, B.A. Benson, F. Bianchini, J. Chluba, J.
Delabrouille,. . . , C. Zhang, Cosmic microwave background measurements,
Snowmass Cosmic Frontier, arXiv, 2021. 2203.07638v1 [astro-ph.CO].
arxiv.org/pdf/2203.07638v1

[6] I. Dimitrijevic, B. Dragovich, A.S. Koshelev, Z. Rakic, J. Stankovic, Some
cosmological solutions of a new nonlocal gravity model, arXiv, 2020.
2006.16041 [gr-qc]. arxiv.org/abs/2006.16041

[7] R. Durrer, The cosmic microwave background: The history of its ex-
perimental investigation and its significance for cosmology, Classical
and Quantum Gravity 32 (2015), no. 12, 124007. Doi: 10.1088/0264-
9381/32/12/124007

[8] O. Farooq, B. Ratra, Hubble parameter measurement constraints on the
cosmological deceleration-acceleration transition redshift, The Astrophys-
ical Journal 766 (2013), no. 1, L7. Doi: 10.1088/2041-8205/766/1/L7

[9] D. Huterer, The accelerating universe, Adventures in Cosmol-
ogy (2011), 321–353. arXiv, 2011. 1010.1162v3 [astro-ph.CO].
arxiv.org/abs/1010.1162

[10] J.A.S. Lima, R.F.L. Holanda, J.V. Cunha, Are galaxy clusters sug-
gesting an accelerating universe independent of SNe Ia and Gravity
Metric Theory?, AIP Conference Proceedings 1241 (2010), 224–229.
Doi: 10.1063/1.3462638

[11] A.M. Lopez, R.G. Clowes, G.M. Williger, A giant arc on the sky, arXiv,
2022. 2201.06875 [astro-ph.CO]. Doi: 10.48550/arXiv.2201.06875

[12] J.C. Mather, E.S. Cheng, R.E. Eplee, R.B. Isaacman, S.S. Meyer, R.A.
Shafer, . . . , D.T. Wilkinson, A preliminary measurement of the cos-
mic microwave background spectrum by the cosmic background ex-
plorer (COBE) satellite, Astrophysical Journal Letters 354 (1990), L37.
Doi: 10.1086/185717

[13] D. Mihu, Dynamical fluid-type universe scenario with dust and radiation,
arXiv, 2016. 1609.00589v2 [gr-qc]. Doi: 10.48550/arXiv.1609.00589

[14] S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Cas-
tro,. . . ,W.J. Couch, Measurements of omega and lambda from 42 high-
redshift supernovae, The Astrophysical Journal 517 (1999), 565–586.
Doi: 10.48550/arXiv.astro-ph/9812133

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 225–238, Jul–Dec 2022

https://arxiv.org/pdf/2203.07638v1
https://arxiv.org/abs/2006.16041
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1088/2041-8205/766/1/L7
https://arxiv.org/abs/1010.1162
https://doi.org/10.1063/1.3462638
https://doi.org/10.48550/arXiv.2201.06875
https://doi.org/10.1086/185717
https://doi.org/10.48550/arXiv.1609.00589
https://doi.org/10.48550/arXiv.astro-ph/9812133


238 R. ALVARADO — A. ANGULO — M. VARGAS

[15] A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M.
Garnavich, . . . , R.P. Kirshner, Observational evidence from supernovae for
an accelerating universe and a cosmological constant, The Astronomical
Journal 116 (1998), no. 3, 1009–1038. Doi: 10.1086/300499

[16] A.G. Riess, L.-G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B.
Mobasher,. . . , Z. Tsvetanov, Type Ia supernova discoveries at z > 1
from the Hubble Space Telescope: Evidence for past deceleration and con-
straints on dark energy evolution, The Astrophysical Journal 607 (2004),
no. 2, 665–687. Doi: 10.1086/383612

[17] B. Saha, H. Amirhashchi, A. Pradhan, Two-fluid scenario for dark energy
models in an FRW universe-revisited, Astrophysics and Space Science 342
(2012), 257–267. Doi: 10.1007/s10509-012-1155-x

[18] R. Sussman, D. Pavón, Exact inhomogeneous cosmologies whose source is
a radiation-matter mixture with consistent thermodynamics, Physical Re-
view D 60 (1999), 104023. Doi: 10.1103/PhysRevD.60.104023

[19] M. Tsamparlis, A. Paliathanasis, Three-fluid cosmological model using Lie
and Noether symmetries, Classical and Quantum Gravity 29 (2011), no. 1,
015006. Doi: 10.48550/arXiv.1111.5567

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 225–238, Jul–Dec 2022

https://doi.org/10.1086/300499
https://doi.org/10.1086/383612
https://doi.org/10.1007/s10509-012-1155-x
https://doi.org/10.1103/PhysRevD.60.104023
https://doi.org/10.48550/arXiv.1111.5567

	Introduction
	Symmetry, Einstein's equations and the solutions
	Analysis of the function K(t) when R=0
	Analysis of the function K(t) when =0

	Kretschmann invariant and singularities
	Hubble parameter and deceleration
	Results analysis for the Hubble parameter
	Results analysis for the deceleration parameter

	The temperature
	Conclusions

