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Abstract

In this work, a complete classification of the Lie group symmetries for
a generalization of Chazy equation was carried out and the equivalence
group for the generalized Chazy equation is calculated and used to present
the principal algebra of the equation.

Keywords: Lie symmetries; equivalence group; Lie symmetries classification;
Chazy generalized equation .

Resumen

En este trabajo se obtiene una clasificación completa del grupo de
simetrías de Lie para una generalización de la ecuación de Chazy, se cal-
cula el grupo de equivalencia y se utiliza éste para presentar el álgebra
principal de la ecuación.

Palabras clave: simetrías de Lie; grupo de equivalencia; clasificación de simetrías
de Lie; ecuación generalizada de Chazy.

Mathematics Subject Classification: 76M60, 70G65, 34C14

1 Introduction

In [3], [8], [12], [9] it is introduced Prandtl’s boundary layer equation for the
stream function for an incompressible, steady two-dimensional flow with uni-
form or vanishing mainstream velocity as

νuyyy = uyuxy − uxuyy, (1)

where ν is a real number and represent the kinematic viscosity, the mentioned
authors also introduce the following similarity transformation

u(x, y) = x1−αg(ω), ω =
y

xα
, (2)

where α is a real number. These authors affirm that using (2) in (1) the following
non-linear third-order differential equation is obtained

νgωωω +Dggω +A(gω)2 = 0, (3)

where g(ω) is a real function and at least C(3) and D = 1 − α (2-dimensional
form) or D = 2 − α (radial form), with A = 2 − α in both cases. In [9],
the similarity transformation was made explicitly, that is, the author details all
the calculations.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(1): 1–17, Jan–Jun 2022



LIE GROUP SYMMETRIES FOR A GENERALIZED CHAZY EQUATION 3

In [3], [12], a rough historical approach in different areas of mathematics
and physics is presented for the equation (3).

In [27], Schlichting proposes a numerical solution for a free 2-dimensional
jet in which α = 2/3 and later an analytic solution was derived by Bickley [4].
In [28], Squire obtained the solution for the free radial jet for which α = 1. In
[13], Glauert presents solutions in parametric form when α = 5

4 (2-dimensional)
and α = 3

4 (radial), and in [26], Riley presents a solution with α = 2 (radial).

The case with α = −1 (2-dimensional), α = −4 (radial) and ν = 1 has
been the most studied equation using the theory of symmetries. In this case
(3) becomes

yxxx − 2yyxx + 3y2x = 0 . (4)

This equation, known as Chazy equation, was introduced by the same author in
[10]. On the other hand, continuing with the use of Lie symmetries for the equa-
tion (4), in [11] Chazy established that the group of symmetries of (4) is a non-
solvable group, and determined a reduction of this equation. In [12] Clarkson
and Olver also established that the group of symmetries of (4) is a non-solvable
algebra, and expressed the general solution of (4) as the ratio of two solutions
of a hypergeometric equation. In [17], Ibragimov and Nucci, using the theory of
Lie symmetries, were able to reduce (4) by the method of semi-canonical vari-
ables. In [1] the theory of non-local Lie symmetries was used to reduce (4), and
later in [23] an improvement was presented. In [2], Arrigo calculated the group
of symmetries and the invariant transformation of this group using canonical
variables. Recently, in [20], [22], the authors characterized invariant solutions
for the equation (4) and Kummer-Schwarz equation, from the generator opera-
tors of the optimal system, and using it, they presented new solutions.

In this line, given a differential equation, we can be considered by giving a
generalization of it, defining coefficients from a differential equation in terms of
parameters, obtained a family of EDS. Within this context, a problem of interest
is to classify said family, into equivalence classes, according to the equivalence
relation that defines each pair of differential equations of the family as equivalent
if and only if, both differential equations have the same group of Lie symmetries.
In this way, the family is divided into equivalence classes and is called a complete
classification of Lie symmetries group (either the description of the classes or the
description of the respective groups of symmetries), this allows knowing all the
differential equations of the family that have the same group of Lie symmetries
for the initial equation.
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Besides, an equivalence transformation for a family the differential equations
is a transformation of change of variables, which makes each member of the
family correspond to a differential equation equivalent. The set of equivalence’s
transformations, endowed with the binary operation defined by the Lie bracket, is
called equivalence group of the differential equations family.
This type of study has been carried out in [23] for the Chazy equation, con-
sidering the coefficients as constant functions.

In this work, we extend the discussion started in [23], considering the follo-
wing generalization of (4):

yxxx − f(y)yxx + 3y2x = 0, (5)

where f is an arbitrary function. Then, our objectives are: i) to provide a com-
plete classification of Lie symmetries group for (5), ii) to determine the equiva-
lence group of (5), and finally, iii) to illustrate the application of the equivalence
group to obtain principal algebra.

2 Lie symmetries

In this section, we study the Lie point symmetries of (5). Following the classical
Lie technique for calculating the symmetries of differential equations [5, 7, 18,
25], we carried out the complete group classification for (5). The corresponding
result can be stated as follows:

Proposition 1 The Lie point symmetry group of the generalized Chazy equation
(5) with arbitrary f , is generated by

X1 = ∂x. Principal algebra, (6)

other complementary cases are presented in the Table 1.

Proof. A general form of the one-parameter Lie group admitted by (5) is
given by

x→ x+ εξ(x, y) + · · · and y → y + εη(x, y) + · · · ,

where ε is the group parameter. The vector field associated with the group of
transformations shown above can be written as Γ = ξ(x, y) ∂

∂x + η(x, y) ∂∂y .
Applying its third prolongation

Γ(3) = Γ + η[x]
∂

∂yx
+ η[xx]

∂

∂yxx
+ η[xxx]

∂

∂yxxx
,
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Table 1: Infinitesimal generators of (5).

Case f(y) Condition Infinitesimal generators of the group
o) f(y) fyy(y) 6= 0 X1 = ∂x (Principal algebra).

i) f(y) = yk1 + k2 k1, k2 6= 0 X1, X2 = −x∂x +
(
y + k2

k1

)
∂y.

ii) f(y) = 2y + k2 k2 6= 0
X1, X2 = −x∂x +

(
y + k2

2

)
∂y,

X3 = −x2

2 ∂x +
(
yx+ k2

2 + 3
)
∂y.

iii) f(y) = 2y - - -
X1, X2 = −x∂x + y∂y,

X3 = −x2

2 ∂x + (yx+ 3)∂y.
iv) f(y) = k2 k2 6= 0 X1, X2 = ∂y.
v) f(y) = yk1 k1 6= 0, 2 X1, X2 = x∂x − y∂y.

to (5), we must find the infinitesimals ξ(x, y) , η(x, y) satisfying the symmetry
condition

η(−fy(y)yxx) + η[x](6yx) + η[xx](−f(y)) + η[xxx] = 0, (7)

associated with (5). Here, η[x], η[xx] and η[xxx] are the coefficients in Γ(3)

given by

η[x] = Dx[η]− (Dx[ξ])yx = ηx + (ηy − ξx)yx − ξyy2x,
η[xx] = Dx[η[x]]− (Dx[ξ])yxx

= ηxx + (2ηxy − ξxx)yx + (ηyy − 2ξxy)y
2
x − ξyyy3x

+(ηy − 2ξx)yxx − 3ξyyxyxx

and η[xxx] = Dx[η[xx]]− (Dx[ξ])yxxx (8)

= ηxxx + (3ηxxy − ξxxx)yx + 3(ηxyy − ξxxy)y2x
+ (ηyyy − 3ξxyy) y

3
x − ξyyyy4x + 3 (ηxy − ξxx) yxx

+3 (ηyy − 3ξxy) yxyxx − 6ξyyy
2
xyxx − 3ξyy

2
xx

+ (ηy − 3ξx) yxxx − 4ξyyxyxxx;
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whereDx is the total derivative operator: Dx = ∂x+yx∂y+yxx∂yx+yxxx∂yxx · · · .
Replacing (8) into (7) we obtain:

η(−fy(y)yxx) + (6yx)(ηx + (ηy − ξx)yx − ξyy2x)

−(f(y))(ηxx + (2ηxy − ξxx)yx + (ηyy − 2ξxy)y
2
x − ξyyy3x)

−(f(y))((ηy − 2ξx)yxx − 3ξyyxyxx)

+ηxxx + (3ηxxy − ξxxx)yx + 3(ηxyy − ξxxy)y2x
+ (ηyyy − 3ξxyy) y

3
x − ξyyyy4x + 3 (ηxy − ξxx) yxx

+3 (ηyy − 3ξxy) yxyxx − 6ξyyy
2
xyxx − 3ξyy

2
xx

+ (ηy − 3ξx) yxxx − 4ξyyxyxxx = 0.

If we denote f ∼= f(y) and substitute yxxx = fyxx − 3y2x in the last expres-
sion, then we can rearrange the expression with respect to 1, yx, y

2
x, y

3
x, y

4
x, yxyxx,

y2xyxx, yxx and y2xx for obtain

ηxxx − fηx + (6ηx − f(2ηxy − ξxx) + 3ηxxy − ξxxx)yx

(6ηy − 6ξx − f(ηyy − 2ξxy) + 3ηxyy − 3ξxxy − 3(ηy − 3ξx))y2x

+(−6ξy + fξyy + ηyyy − 3ξxyy + 12ξy)y
3
x − ξyyyy4x

+(3fξy + 3ηyy − 9ξxy − 4fξy)yxyxx − 6ξyyy
2
xyxx

+(−fyη − f(ηy − 2ξx) + 3ηxy − 3ξxx + f(ηy − 3ξx))yxx

−3ξyy
2
xx = 0.

As we know, the variables 1, yx, y
2
x, y

3
x, y

4
x, yxyxx, y

2
xyxx, yxx and y2xx, are

linearly independent, thus the previous expression we obtain the determining
equations

ξy = ηyy =0, (9a)

ηy + ξx =0, (9b)

−fηxx + ηxxx =0, (9c)

f(−2ηxy + ξxx) + 6ηx + 3ηxxy − ξxxx =0, (9d)

−fyη − fξx + 3ηxy − 3ξxx =0. (9e)

Solving in (9a), we have ξ = c1(x) and η = yc2(x) + c3(x), with c1, c2, c3 as
arbitrary functions. From the expressions for ξ and η into (9b), (9c), (9d) and
(9e), we obtain respectively:

c2(x) + c′1(x) =0, (10a)

−(yc′′2(x) + c′′3(x))f + yc′′′2 (x) + c′′′3 (x) =0, (10b)

[−2c′2(x) + c′′1(x)]f + 6[yc′2(x) + c′3(x)] + 3c′′2(x)− c′′′1 (x) =0, (10c)

−[yc2(x) + c3(x)]fy − c′1(x)f + 3c′2(x)− 3c′′1(x) =0. (10d)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(1): 1–17, Jan–Jun 2022



LIE GROUP SYMMETRIES FOR A GENERALIZED CHAZY EQUATION 7

Using (10a) and differentiating (10c) with respect to y we obtain −3c′2(x)fy +
6c′2(x) = 0, whose derivative with respect to y yields

− 3c′2(x)fyy = 0. (11)

From (11), we consider two cases: fyy 6= 0 or fyy = 0.
First, we consider the case fyy 6= 0. According to (11), we can assert that

−3c′2(x) = 0, hence c2(x) = k1, with k1 an arbitrary constant. Then from (10a),
we obtain:

c2(x) = k1, c1(x) = −xk1 + k2, (12)

where k2 is an arbitrary constant. By replacing (12) into (10c), we get c′3(x) =
0, so that c3(x) = k3. From the above and (12) into (10d), it follows that
−(yk1 + k3)fy + f(k1) = 0. By differentiating in the previous expression with
respect to y, we have (yk1 + k3)fyy = 0. But we know that fyy 6= 0, therefore
k1 = 0 and k3 = 0. Consecuently, from c3(x) = k3 and (12), we obtain the
infinitesimal generators of the group, ξ = c1(x) = k2 and η = k1y + k3 = 0,
which is equivalent to X1 = ∂x with fyy 6= 0.

We consider now the case fyy = 0, and proceed to use (11) to establish (6).
First, from fyy = 0 we have

f(y) = yk1 + k2, (13)

with k1, k2 as arbitrary constants. From (13), we see that there are two cases to
be considered regarding k1 6= 0 or k1 = 0.

1. Case k1 6= 0. For (13) consider two cases: k2 6= 0 or k2 = 0.

(a) Case k1 6= 0 and k2 6= 0. From (13) and (10b) we get
−(yk1 + k2)(yc

′′
2(x) + c′′3(x)) + yc′′′2 (x) + c′′′3 (x) = 0. By differen-

tiating the last expression with respect to y, we obtain

− k2c′′2(x)− 2k1yc
′′
2(x)− k1c′′3(x) + c′′′2 (x) = 0. (14)

Now, by differentiating (14) with respect to y, we find
−2k1c

′′
2(x) = 0, that implies c′2(x) = k3, and thus, c2(x) = xk3 +

k4, where k3, k4 are arbitrary constants. From (10a) we have

c1(x) = −x
2

2
k3 − xk4 + k5. (15)
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By substitution of c2(x) = xk3 + k4 into (14), we get c′′3(x) = 0, so

c3(x) = xk6 + k7. (16)

From (13), c2(x) = xk3 + k4, (15) and (16) into (10c), we obtain

(yk1 + k2)(−3k3) + 6(yk3 + k6) = 0, (17)

and by differentiating this expression with respect to y, we find

k3(−k1 + 2) = 0. (18)

In last equation we see that there are two cases to be considered:
k3 = 0 or k3 6= 0.

i. Case k1 6= 0, k2 6= 0, and k3 = 0. From (17) we have k6 = 0.
From c2(x) = k4, (15) and (16), we have:

c1(x) = −xk4 + k5, c2(x) = k4, c3(x) = k7. (19)

From (19) and (13) into (10d), we find −k1k7 + k2k4 = 0,
implies k7 = k2k4

k1
. Then, we can rewrite (19) as :

c1(x) = −xk4 + k5, c2(x) = k4, c3(x) =
k2k4
k1

.

Summarizing, the infinitesimal generators of the group are:
η = yk4 + k2k4

k1
, ξ = −xk4 + k5, which is equivalent to:

X1 = ∂x and X2 = −x∂x +

(
y +

k2
k1

)
∂y.

ii. Case k1 6= 0, k2 6= 0 and k3 6= 0. From (18), we have k1 = 2.
From (17), (2y+ k2)(−3k3) + 6(yk3 + k6) = 0, which implies
k6 = k3k2

2 . From the above, c2(x) = xk3 + k4, (15) and (16),
we obtain

c1(x) = −x
2

2
k3 − xk4 + k5, c2(x) = xk3 + k4,

c3(x) = x
k3k2

2
+ k7. (20)

Inserting (13) and (20) into (10d), we find −2[y(xk3 + k4) +
(xk3k22 + k7)] − (2y + k2)[−(xk3 + k4)] + 6k3 = 0, hence
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k7 = k2k4
2 + 3k3.

From this into (20) it follows that c1(x) = −x2

2 k3 − xk4 + k5,

c2(x) = xk3 + k4, c3(x) = xk3k22 + k2k4
2 + 3k3.

Summarizing, the infinitesimal generators of the group are:

η = yxk3 + yk4 + x
k3k2

2
+
k2k4

2
+ 3k3,

ξ = −x
2

2
k3 − xk4 + k5,

which is equivalent to X1 = ∂x, X2 = −x∂x+ (y+ k2
2 )∂y, and

X3 = −x
2

2
∂x + (yx+

k2
2

+ 3)∂y.

(b) Case k1 6= 0 and k2 = 0. Since (13), we have f(y) = yk1, then using
(10b), we have −y2(k1c′′2(x))− y(k1c

′′
3(x))− c′′′2 (x)) + c′′′3 (x) = 0.

By differentiating this with respect to y, it follows

− 2yk1(c
′′
2(x))− k1c′′3(x) + c′′′2 (x) = 0. (21)

From this, we conclude that c′′2(x) = 0, thus c2(x) = xk3 + k4, with
k3, k4 as arbitrary constants. When replacing c2(x) = xk3 + k4 into
(21), we obtain c′′3(x) = 0, hence c3(x) = xk6 + k7, with k6, k7
as arbitrary constants. From c2(x) = xk3 + k4 into (10a), we find
c′1(x) = −xk3 − k4, hence c1(x) = −k3

2 x
2 − xk4 + k5. Now, from

f(y) = yk1, c2(x) = xk3 + k4, c3(x) = xk6 + k7 and c1(x) =
−k3

2 x
2 − xk4 + k5 into (10c), we obtain yk3(−k1 + 2) + 2k6 = 0,

which implies that

k6 = 0 and k3(−k1 + 2) = 0. (22)

Then, from (22) consider two cases: k3 = 0 or k3 6= 0.
i. Case k1 6= 0, k2 = 0 and k3 = 0. From c2(x) = xk3 + k4,
c3(x) = xk6 + k7 and c1(x) = −k3

2 x
2 − xk4 + k5, we have

c1(x) = −xk4 + k5, c2(x) = k4 and c3(x) = k7.

From the last expressions into (10d), we obtain k7 = 0.
Then, we get: c1(x) = −xk4 + k5, c2(x) = k4 and c3(x) = 0.
Summarizing, the infinitesimal generators of the group are:
η = yk4 and ξ = −xk4 + k5, which is equivalent to:

X1 = ∂x and X2 = x∂x − y∂y.
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ii. Case k1 6= 0, k2 = 0 and k3 6= 0. From (22), we have k1 =
2. Then, from c2(x) = xk3 + k4, c3(x) = xk6 + k7, and
c1(x) = −k3

2 x
2−xk4+k5, we find: c1(x) = −k3

2 x
2−xk4+k5,

c2(x) = xk3 + k4 and c3(x) = k7.
Summarizing, the infinitesimal generators of the group are:
η = yxk3 + yk4 + k7, ξ = −k3

2 x
2 − xk4 + k5, with k7 = 3k3,

which is equivalent to:

X1 = ∂x, X2 = −x∂x + y∂y, X3 = −x
2

2
∂x + (yx+ 3)∂y .

2. From (13), suppose that k1 = 0. Then, we have f(y) = k2 and conse-
quently, from (10b) we obtain:

y[−k2c′′2(x) + c′′′2 (x)]− k2c′′3(x) + c′′′3 (x) = 0.

Using (10a) in the expression above we can conclude:

c1(x) =
−a1
k32

exk2 − a3
2
x2 − xa2 + a4, c2(x) =

a1
k22
exk2 + xa3 + a2,

c3(x) =
a5
k22
exk2 + xa6 + a7, (23)

with a1, · · · , a7 arbitrary constants. Using (23) into (10c) we get:

exk2
[
y

(
6a1
k2

)
+ a1 +

6a5
k2

]
+ 6a6 − 3a3k2 + y(6a3) = 0,

which implies that a1 = a3 = a5 = a6 = 0. From (23), c1(x) = −xa2 +
a4, c2(x) = a2 and c3(x) = a7. From the last expressions into (10d),
we have k2a2 = 0, hence a2 = 0. Then, c1(x) = a4, c2(x) = 0, and
c3(x) = a7. Thus, the infinitesimal generators of the group are η = a7
and ξ = a4, which is equivalent to

X1 = ∂x and X2 = ∂y.

Remark 1 In [10], the generators of the symmetry group of Equation (4) are
presented without showing details for the calculations, these details are pre-
sented in [20], where the optimal algebra and new invariant solutions are pre-
sented too. Now, the previous results for the generators of the Lie symmetries
group coincide with the part (iii) of Proposition 1, after manipulating some con-
stants, which are: X1 = ∂x, X2 = x∂x − y∂y andX3 = x2∂x − (2yx+ 6)∂y.
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LIE GROUP SYMMETRIES FOR A GENERALIZED CHAZY EQUATION 11

3 The equivalence group

An equivalence transformation for (5) is a change of variables (x, y) → (x̃, ỹ),
where the structure of (5) is conserved. The infinitesimal generators of the con-
tinuous group of equivalence transformations have the form

Γ = ξ(x, y)∂x + η(x, y)∂y + µ(x, y, f)∂f . (24)

According to [25, 15], the operator (24) generates the continuous equiva-
lence group if it is admitted by the extended system:{

yxxx − fyxx + 3y2x = 0,

fx = 0.
(25)

The infinitesimal invariance test for the extended system (25) requires the
following prolongation of the operator (24),

Γ(3) = ξ(x, y)∂x + η(x, y)∂y + µ(x, y, f)∂f

+η[x]∂yx + η[xx]∂yxx + η[xxx]∂yxxx + ω∂fx ,

where η[x], η[xx] and η[xxx] are given in (8), ω = D̃x[µ] − fxD̃x[ξ] − fyD̃x[η]

and D̃x = ∂
∂x + fx

∂
∂f + fxx

∂
∂fx

. Applying Γ(3) to the extended system (25), we
obtain that the invariance condition:{

µ(−yxx) + η[x](6yx) + η[xx](−f) + η[xxx] = 0,

ω = 0.
(26)

Substituting (25) in (26), we have ω = µx − fy(ηx) = 0. Now, as the constant
1 and fy are algebraically independent, then first equation above implies µx = 0
and ηx = 0. Thus µ = µ(y, f), η = η(y), and ξ = ξ(x, y). With these in hand,
we substitute (8) into (26) and get

µ(−yxx) + (6yx)((ηy − ξx)yx − ξyy2x)

− (f)((−ξxx)yx + (ηyy − 2ξxy)y
2
x − ξyyy3x + (ηy − 2ξx)yxx − 3ξyyxyxx)

− (ξxxx)yx + 3(−ξxxy)y2x + (ηyyy − 3ξxyy) y
3
x − ξyyyy4x + 3 (−ξxx) yxx

+3 (ηyy − 3ξxy) yxyxx − 6ξyyy
2
xyxx − 3ξyy

2
xx

+ (ηy − 3ξx) yxxx − 4ξyyxyxxx = 0.

now, we replace yxxx = yxxf − 3y2x in the last expression.
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As know, the variables yx, y2x, y
3
x, y

4
x, yxyxx, y

2
xyxx, yxx, y

2
xx are linearly in-

dependent; hence we obtain the following system of determining equations

ξy = ηyy = µx = ηx =0, (27a)

ηy + ξx =0, (27b)

fξxx − ξxxx =0, (27c)

µ+ fξx + 3ξxx =0. (27d)

From (27a), we get

ξ = c1(x), η = yc2 + c3 and µ = µ(y, f), (28)

where c1 is arbitrary function and c2, c3 are arbitrary constants. From (28) into
(27b) it follows c2 + c′1(x) = 0, which implies c1(x) = −c2x + c4. From the
last expresion in (27d) we get µ = fc2, then the infinitesimal generators of the
equivalence group of the (5) are η = yc2 + c3, ξ = −c2x + c4, and µ = fc2
which is equivalent to X1 = −x∂x + y∂y + f∂f , X2 = ∂x and X3 = ∂y.
We summarize the above considerations as follows:

Proposition 2 The Lie algebra for the continuous equivalence group of Equa-
tion (5), is generated by the following vector fields:

X1 = −x∂x + y∂y + f∂f , X2 = ∂x, X3 = ∂y. (29)

4 Principal algebra using the equivalence group

In this section, we show the consistency of the previous results by using the
equivalence group to calculate the principal algebra, which coincides with that
obtained in the Proposition 1.

The most general symmetries algebra of Equation (5), for an arbitrary func-
tion f is called the Principal Lie Algebra Lp [15, 19]. This algebra can be ob-
tained from equivalence algebra Le (29). Let us denote by x = (x) and y = (y)
the independent and dependent variables, respectively, and by f ≡ {f} the arbi-
trary elements in the system (5). Let the projection X = pr(x,y)(Y ) of the (29)
to the space (x,y) of the independent and dependent variables

X = pr(x,y)(Y ) = ξ∂x+ η∂y. (30)

Also, consider the projection Z = pr(y,f)(Y ) to the space (y, f) involved in the
arbitrary elements

Z = pr(y,f)(Y ) = η∂y + µ∂f. (31)
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From the above, it is clear that operators X and Z are well defined, i.e. their co-
ordinates involve only the respective variables (x,y) and (y, f). For our specific
case, the Proposition on projections was formulated in [16, 19] as follows:

Proposition 3 An operator X belongs to the principal Lie algebra Lp for (5)
if and only if X = pr(x,y)(Y ), where Y is an equivalence generator such that
Z = pr(y,f)(Y ) ≡ 0.

Now, the idea is to apply Proposition 3 to find the principal Lie algebra Lp of
(5). Let‘s consider the equivalence generator Y = k1X1 +k2X2 +k3X3, which
is a linear combination of the operators in (29). The above is equivalent to

Y = k1[−x∂x+ y∂y + f∂f ] + k2[∂x] + k3[∂y], (32)

with projections (30) and (31) as

X = [−xc2 + c4]∂x+ [yc2 + c3]∂y,

Z = [yc2 + c3]∂y + [fc2]∂f.

Now, we know that Z ≡ 0 if and only if c2 = c3 = 0, thus applying Proposi-
tion 3, we can conclude that Y = k2X2. So, the principal Lie algebra Lp of (5) is
spanned by {X2}, where X2 is the presented in the
Proposition 2 which coincides with (6), from Proposition 1.

Remark 2 Note that the Proposition 3 can be proved with the following con-
siderations: We recall that the principal Lie algebra consists of all the op-
erators Γ = ξ(x, y) ∂

∂x + η(x, y) ∂∂y admitted by equation (5) for any f(y).
Therefore the principal Lie algebra is the subalgebra of the equivalence alge-
bra, such that any operator Y (in our case these operator are X1, X2, X3) of
this subalgebra leaves invariant equations f = f(y). It follows that f and y are
invariant with respect to Y . It means that η = 0 and µ = 0, or Pr(y, f)(Y ) = 0.

5 Conclusions

In this work, the complete classification of the symmetry group of the general-
ized Chazy equation (5) was carried out (Proposition 1). According to Table 1,
the family of differential equations defined by (5), where f(y) is a parameter,
the only equation that has the same group of symmetries as the Chazy equation
(4), is itself.
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Furthermore, in the item ii) of the table 1 it can be noted that there is a more
general Chazy equation that has the same group symmetries as the equation (4).
In Proposition 1, the principal algebra is calculated and it coincides with that
obtained by applying Proposition 3 to the equivalence group.

Ideas to develop in future works could be calculating the conservation laws
for (4), using the symmetries presented in Proposition 1, also it is possible to
investigate the contact symmetries as was presented in [24, 14, 6] and try to
obtain for the symmetries associated with the equation (4), the classification of
its Lie algebra as was presented in [21].
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