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158 R.P. BEAUSOLEIL

Abstract

This paper introduces an adaptation of a multiobjective tabu/scatter
search to deal with nonlinear discrete, mixed-integer constrained engineer-
ing optimization problems. The problem is reduced to a bi-objective prob-
lem (the objective function and the constraint violation function). This
approach eliminates the use of penalties for constraint handling. Its perfor-
mance was proved with different standard engineering optimization prob-
lems, including mathematical function minimization and structural engi-
neering. The results show that the proposed method performs well in terms
of efficiency and robustness.

Keywords: multiple objectives; metaheuristics; engineering optimization.

Resumen

Este artículo introduce una adaptación de una Búsqueda Tabú/ Dis-
persa multiobjetivo para problemas de ingeniería con restricciones no li-
neales con valores discretos y enteros-mixtos. El problema es reducido a
un problema bi-objetivo, (la función objetivo y la función de violación de
las restricciones). Este enfoque elimina el uso de penalidades para ma-
nipular las restricciones. El desempeño del algoritmo fue probado con
diferentes problemas conocidos de la ingeniería, incluyendo algunas fun-
ciones de optimización matemática e ingeniería estructural. Los resultados
muestran que el método propuesto trabaja bien en términos de eficiencia y
robustez.

Palabras clave: múltiples objetivos; metaheurísticas; optimización en
la ingeniería.

Mathematics Subject Classification: 90C27.

1 Introduction

Many engineering applications, such as structural optimization and engineering
design, involve difficult optimization problems that must be solved efficiently
and effectively. The nature of these applications usually need to be constrained
in specific parts of the search space that are delimited by linear and/or nonlinear
constraints.

Different exact as approximation algorithms have been developed for solv-
ing constrained optimization problems. Exact approaches such as sequential
quadratic programming methods and generalized reduced gradient methods [35],
[12], [7] are inflexible to adapt the solution algorithm to a given problem. On
the other hand, approximation optimization algorithms such as the evolution-
ary algorithm proposed by Fogel et al. [14], De Jong [10], Koza [25] and the
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genetic algorithm (GA) proposed by Holland [22] and Goldberg [19], human
behaviour (e.g., tabu search proposed by Glover [16]), and the physical anneal-
ing process (e.g., simulated annealing proposed by Kirkpatrick et al. [24]) have
been successfully applied for tackling constrained optimization problems during
the the last four decades. Recently, Geem et al. [15] developed a new har-
mony search (HS) meta-heuristic algorithm that was conceptualized using the
musical process of searching for a perfect state of harmony. These different ap-
proaches have been applied to engineering optimization problems. Engineering
design is one of the scientific fields in which constrained optimization problems
frequently arise. These types of problems normally have mixed (continuous, in-
teger and discrete) design variables, nonlinear objective functions and nonlinear
constrains. Constrains are very important in engineering design problems, they
are usually imposed in the statement of the problems and sometimes are very
hard to satisfy, which makes the search difficult and inefficient.

The organization of the paper is as follows. Related work is presented in
section 2. In the Section 3 the problem formulation and sets are presented. In
the Section 4 the parameter settings are presented. Computational experiments
are presented in Section 5. Results in Section 6. Section 7 contains conclusions.
In the appendix all problems are presented.

2 Related work

Engineering optimization problems has been tackled by different approaches.
S. Akhtar et al. developed a socio-behavioural simulation model [1], M.G. Sa-
hab et al. a hybrid genetic algorithm for structural optimization problems [31],
K.S. Lee and Z.W. Geem a harmony search [26], K.E. Parsopoulos and M.N.
Vrahatis a particle swarm optimization [28], K.H. Raj et al. an evolutionary
computational technique [29], Z.W. Geem et al. [15] a harmony search, M.
Mahdavi et al. an improved harmony search algorithm [27], A.R. Yildiz a hy-
brid a Taguchi-harmony search algorithm [36], also, M. Fesanghary et al. used a
hybrid harmony search algorithm [13], L.C. Cagnina et al. a simple constrained
particle swarm [6], A. Kaveh and S. Talatahari a hybrid particle swarm and ant
colony optimization [23].

We compare our approach with all these different approaches. To our knowl-
edge, this is one of the first attempts at applying the tabu/scatter search technique
to engineering optimization problems.
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3 Problem formulation and sets

We are interested to find

x = (x1, x2, . . . , xn, yn+1, yn+2, . . . , yn+l)

such that
Minimize {f0 : f0 = f(x)}

under the following constrains: ℑ = {x : gj(x) ≤ 0, j = {1, 2, . . . ,m}}, where
xi ∈ Xi ⊂ ℜ, yn+k ∈ Yk ⊂ Z and Z the integer set, where i ∈ {1, 2, . . . , n},
k ∈ {1, 2, . . . l}.

The problem is again formulated as follows:

Minimize {f0, f1}

where

f1 =

m∑
j=1

max(0, gj(x))

consequently, we apply a Pareto-base multiobjective tabu/scatter search.
During the development of our text we use the following notation:

S a set of trial solutions, from which all other sets derive.
P an approximate Pareto set, containing all non-inferior solutions of S.
R a diverse set of solutions subset of P , called the reference set.
D a set, consisting of considered duplicated solutions.
C a selected set of the set R.
Ω a set of generator points, created from a given set C.
b the larger size of the trial solutions set.
b1 the larger size of the reference set.
b2 the larger size of the selected set.

Constrained mixed integer tabu/scatter search

This is a hybrid method that, in the tabu search phase creates restrictions to
prevent moves toward solutions that are “too close” to previously visited solu-
tions. A sequential fan candidate list strategy is used to explore solution neigh-
bourhoods. A weighted linear function is used to aggregate the objective func-
tion values. The weights used are modified in a way that a sufficient variety of
points can be generated. These solutions are later used as reference points in the
scatter phase.
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In order to guide the search more quickly to better regions, as in MOSS-
II (see [4]) we embed, in the tabu phase, linear combinations by joining the
new solutions with point of current set of efficient points. The proposed al-
gorithm incorporates a new strategy in the scatter phase to improve the search
toward the nondominated front. New points are generated by re-starting from
the tabu search phase, taking as starting points solutions of the current efficient
solutions set.

The following update to our TS/SS (MOSS) strategy is performed:

1. The algorithm works with continuous variables rounding the integers vari-
ables to the closest integers.

2. Frequency memory is used to control the deterministic selection of the
sub-ranges where the variables take values. The sub-ranges are sorted
in ascending order taking into account the frequency distribution of the
visited sub-ranges, choosing the less visited sub-range in a diversification
strategy and the most visited sub-range to intensify the search.

3. A new strategy to change the value of the radius of the ball in the decision
space is introduced.

4. The Kramer Choice Function is changed by a new choice method.

5. A modified strategy to create subsets of new solutions to be combined is
introduced.

6. A new procedure to change the bounds of the sub-ranges is introduced.

7. In order to restart, we choose starting points using the choice method
proposed.

3.1 The reference set

The reference set R is a subset of the trial solution set S that consists of an
approximation to the Pareto-optimal set.

Let P ⊆ S\D ∪ R, consists of a subset of current efficient solutions. If
|P | > b1, then we use the max-min criterion and a parameter ϵ as measure of
the closeness, to obtain a diversified collection of solutions P

′
, that is, set one

first element of P into P
′
, then let x ∈ P maximizes the minimum distance

d(f(x), f(y(i))) for i ≤ |P ′ | (d is the Euclidean distance) and hold the condi-
tion d(f(x), f(y(i))) ≥ ϵ, y(i) pertaining to the non-empty set P

′
then, when

P
′
= b1 set P = P

′
.
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3.2 Critical event design

The critical even design has been introduced within the context of our MOSS
algorithm [3], it is based on a design that monitors the current solutions in R and
in the trial solutions set S to control the proximity of the points in these sets.
The elements considered in the design are the values of the objectives and the
decision variables.

Let B(p, ξ) be a set of points within distance ξ from p, ξ > 0. We call
B(p, ξ) a ball with center p and radius ξ. Then, for any point p ∈ f [S ∪ R]
we define a ball B(p, ρ) with 0 < ρ ≤ 1, and for any point p

′ ∈ S ∪ R a ball
B(p

′
, δ) with 0 < δ ≤ 1.

We say that two points are near (“duplicated”), if a trial solution satisfies a
full “critical condition”. A “critical condition” is “full” if it is satisfied and the
trial solution belongs to B(p

′
, δ) defined on S ∪ R. The “critical condition” is

satisfied if the image of the trial solution pertains to B(p, ρ) defined on f [S∪R].
In this new approach we define a new strategy to give values to parameter δ,

it is explained in 4.8. This design can be seen as tabu-distance restrictions that
permits dynamically diversify and intensify the search.

3.3 Tabu search phase

We use a Multi-Start TS as a generator of diverse solutions. This approach can
be seen as a sequence of tabu searches where each TS has its own starting point,
recency memory, and aspiration threshold; they all share the frequency memory
to bias the search to unvisited or less visited regions and also to a most visited
regions.

3.3.1 Candidate list strategy and move

As in our MOSS, we use a simplified version of a sequential fan strategy as a
candidate list strategy. The sequential fan generates p best alternative moves at
a given step, and then creates a fan of solution streams, one for each alternative.
The best available moves for each stream are again examined, and only the p
best moves overall provide the p new streams at the next step. In our case, taking
p = 1, we have in each step one stream and a fan of solutions denoted by fan is
considered.

In this approach we propose moves that consist of changing one or at most
five selected variables. We use a frequency memory to select the move-variables.
The range of variables Ui −Li are split into sub-ranges uij − lij of equal size, j
represents the index of the sub-ranges, j ∈ {1, 2 . . . , s}. The move x

′
= m(x)

is defined as follows:
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1. if a new best solution was reached in a previous iteration then, set x
′′

equal to the best solution found; in other case x
′′
i = lij + α(uij − lij)

where α = itabu/fan and itabu is the current iteration value in the
tabu phase.

2. set x
′
i = xi + exp(−α)(x

′′
i − xi).

Now we explain how to transit to a new solution. Our implementation uses
as move attribute variables that change their values as result of the move. The
change is represented by a difference of values z∗k − fk(x

′
) (∀k = 0, 1) , x

′
=

m(x), x is a current solution and Z∗ is a reference solution (or aspiration level)
Z∗ = (z∗0 , z

∗
1), denoted by aspiration_level in our pseudo_code. Without lost

generality, let us assume that every criteria is minimized. Let ∆f(x
′
) =

(∆f0(x
′
),∆f1(x

′
)) where ∆fk(x

′
) = z∗k − fk(x

′
), k ∈ {0, 1}.

Let E the set of efficient moves and D the set of deficient moves, where a
deficient move is a move that not satisfies the aspiration level, in otherwise the
move is efficient.

Definition 3.1 The best efficient move m∗ is defined as a move such that [m ∈
E(x) : c∗ = min{c(x′

), x
′
= m(x)}] where c (.) is the cost function defined for

the problem.

In each iteration if E(x) ̸= ∅ the solution transit to x
′
= m∗(x) such that

m∗ ∈ E, in other case x
′
= m∗(x) and m∗ ∈ D.

A move is efficient if (∃∆fk(x
′
) ≥ 0) or (∀k ∈ {0, 1}[∆fk(x

′
) = 0])

qualifying to be introduced in S, otherwise is deficient.
The point Z∗ is updated by z∗k = min fk(x

′
)∀k ∈ {0, 1}, x

′ ∈ S.
In order to measure the quality of the solution we propose to use in our tabu

search approach an additive function U with weighting coefficients λk ≥ 0 (k =
0, 1), representing the relative importance of the objectives. Each component in
the weight vector is set according to the objective function values. The influence
is given by an exponential function exp(−sk), where sk is obtained as sk =∣∣∣(z∗k − fk(x

′
))
∣∣∣ / |z∗k|, λk = 2− exp(−sk) (k ∈ {0, 1}), then

U(x
′
) =

{
(1− θ)

∑
k=0,1 λk∆fk(x

′
) if residenceij > Ti∑

k=0,1 λi∆fk(x
′
) otherwise

where residenceij is the number of time that the sub-range j has been visited by

the variable with index i, the parameter θ =
freq

freqtotal , freq is an addition of
the entries of type residence associated to the selected variables and sub-ranges
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that hold the condition residenceij > Ti and freqtotal =
∑

i freqi. We would
have for each variable a threshold Ti = max{1, round (

∑s
i=1 freqi/s)}, where

round is the closest integer.
Notice that, if ∆fk(x

′
) is positive then, the term produces an inducement, in

otherwise a penalty. If z∗k = 0 we take account only the numerator of sk.
Candidate denotes the procedure to create the neighbourhood of the current

solution x, using the candidate list and the move that have been described above.

Candidate
1. for i = 1 to fan
2. Choose the variables
3. x

′
= m(x)

4. if aspiration_level and not is tabu then set x
′

into S
5. endfor
6. Choose x∗ ∈ S

3.3.2 Tabu restrictions

Tabu restrictions are imposed to prevent moves that bring the values of variables
“too close” to values they held previously [17].
The implementation of this rule is as follows: the variable x

′
is excluded from

falling inside the line interval bounded by x − w(x
′ − x) and x + w(x

′ − x),
when a move from x to x

′
is executed, where 1 ≥ w > 0.

3.3.3 Tabu routine

The Tabu routine creates new solution vectors taking account the aspiration level
function, the additive function value and a penalty function that modifies the
value of the additive function. Tabu restrictions are used to guide the search.
The parameters nonefficientmove identifies the maximum number of time that a
non-efficient move is accepted, efficientmove identifies if a move has generated
a solution accepted as trial solution and introduced in the set S.

Tabu Routine
1. nonefficientmove = 0
2. while nonefficientmove < b3
3. efficientmove = false
4. x∗ = Candidate
5. Update the tabu list
6. Set x = x∗
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7. if efficientmove then
8. nonefficientmove = 0
9. movefive = false
10. else
11. nonefficientmove = nonefficientmove + 1
12. movefive = true
13.endwhile

3.3.4 Multi-start tabu procedure

In our implementation the parameter numcomb denotes the number of tabu iter-
ations necessary to apply linear combination with a set of parameters {wci : i =
1, . . . , 10}, startpoints is the number of initial points, delta (δ) is the parame-
ter that measure the proximity of two points in the decision space, and movefive
identifies if one or at most five variables are moves. In this version, we introduce
a new mechanism to deal with integer optimization problems, where integers
identifies that the solving problem have integer variables.

MultiStartTabu Procedure
1. icomb = 1, itabu = 0, ρ = 0.2, movefive =true
2. repeat
3. Choose the subranges
4. itabu = itabu + 1
5. Reset tabu list
6. Set the reference point
7. Tabu Routine
8. if itabu = icomb ∗ numcomb then Linear Combination
9. icomb = icomb + 1
10. if integers then round the integer variables of x ∈ S
11. Translate R to S
12. Choose the nondominated points of S
13. Update R
14. until itabu = startpoints

3.4 Method choice

The method begins calculating the score for each solution. The next step is to
sort the solutions in ascending order taking into account the score calculated.
The third step is to choose a subset of this ordered solutions.
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Here, y∗∗1 , y∗1 denote the maximum and the minimum value of the function
f1(x

i) for all solution xi in the set R.

1. Set the decision matrix DM =∥ yij ∥ where yij = fj(x
i), xi belongs

to a reference set of solutions R and fj(x
i) is the value of the objective j

(j = 0, 1) for every xi ∈ R (i = 1, 2, . . . , |R|).

2. Calculate the score of each solution of DM as following: scorei =
|(yi1 − y∗1)/(y

∗∗
1 − y∗1)|.

3. Set in increasing order, taking into account the score calculated, a collec-
tion of b2 solutions from R into C.

3.5 Choosing the best solution

Assume we minimize the objective function, and we choose a set C ⊂ R apply-
ing our choice method explained above. Let f∗

0 = min{f0(x)|f1(x) = 0, x ∈
C} and f∗

1 = min{f1(x)|f1(x) > 0, x ∈ C} then, the best solution is denoted
by f∗ and defined as

f∗ =

{
f∗
0 if ∃ x ∈ C : f1(x) = 0
f∗
1 otherwise.

Therefore, the current best solution is the best f∗ reached so far.
The following routine identifies this process. The parameter newsol identifies

if an improved solution was reached in the current iteration of the algorithm,
cardC is the cardinal of C, xi ∈ C, bestsol is a record containing all attributes
of the best solution, prevnewsol denote the best solution in the previous global
iteration.

Choice_procedure
newsol= false
Choose solutions/*to apply the choice method*/
for i = 1 to cardC

if (f0(xi) < bestsol.f0) and (bestsol.f0 = 0)
or (f1(xi) < bestsol.f1) and (bestsol.f1 > 0)

then prevnewsol.x = bestsol.x
prevnewsol.f = bestsol.f
bestsol.x = xi

bestsol.f = f(xi)
newsol = true

endfor
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3.6 Scatter search phase

This phase is designed to intensify the search around the best solution found so
far. This is done by creating new trial solutions which consist of weighted linear
combination of a new set of points pertaining to the set Ω (defined below).

3.6.1 Generating trial points

In the scatter search phase the intensification scheme is based on a projection
method [18] that fix some variables to move and the others free to change. In this
case, a set Ω is created and a new set of trial solutions are generated as follows:
To create a set of vectors around the best solution x∗, that we call generator
points, we define the set Ω = {(y′

, x∗)|y′
= θ1x

∗ + θ2y} where y ∈ C and y
′

is
a generator point.

Now we explain the strategy to create new trial solutions: a memory that
records the four best feasible solutions more recently achieved is defined, then
the variables whose values have not changed (the consistent variables) are fixed
and the rest are free to change (we consider that no change in the values of the
variables has occurred, if the variation between the considered variables is less
than 0.1). Then, for all pair (y

′
, x∗) ∈ Ω a new trial point x

′
is generated as

weighted linear combination of (y
′
, x∗), that is, x

′
= y

′
+ γ(x∗ − y

′
), where

γ = α exp(−|x∗ − y
′ |) and α = α0 + h∆ (h = 1, . . . , ŝ), ∆ is the step of

variation. Notice that if y
′

is close to x∗ then γ −→ α in otherwise γ −→ 0.
Therefore, S =

{
x

′
: x

′
= y

′
+ γ(x∗ − y

′
)∀(y′

, x∗) ∈ Ω
}

.

3.6.2 Scatter procedure

We use the following parameters: iscatter denote the current iteration in the
scatter phase and maxi the maximum number of scatter iteration.

Scatter Procedure
1. iscatter = 0
2. ρ = 1
3. while maxi > iscatter or newsol do
4. Choose a subset C of efficient solutions from R
5. Generate trial points from Ω and put into S
6. if integers then round the integer variables of x ∈ S
7. iscatter = iscatter + 1
8. end of while

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 24(1): 157–188, January 2017



168 R.P. BEAUSOLEIL

3.7 Starting points

The StartingPoints procedure generates systematically the seed points to be used
by tabu phase. Here the parameter start_points denote the number of starting
points.

StartingPoints procedure
1. start_points = initial_points
2. for i = 1 to start_points
3. rri = (i− 1)/(start_points − 1)
4. si = Li + rri ∗ (Ui − Li)
5. endfor

The SelecNewPoints procedure is used to rebuild the initial set of reference
points and restart the search from tabu phase.

SelectNewPoints procedure
1. start_points = cardC
2. for i = 1 to start_points
3. si = xi : xi ∈ C
4. endfor

3.8 Changing the radius of the ball

The parameter delta denote the radius of the balls in the decision space, newsol
is true if in the current scatter iteration a new improved solution is reached, false
in otherwise. The user parameter delta is initialized and halving its current value
when bestsol has not improved, where deltamax, deltamin are the corresponding
ones upper and lower bounds.

1. if newsol then delta = (deltamin-delta)*0.5.

2. else delta = (deltamin-delta)*0.5.

3.9 Changing the bounds of the sub-ranges

The maximum and the minimum value of each variable for the current selected
set of non-dominated solutions are calculated. Then, for each variable defined in
the range [Li, Ui] the lower bound of the first sub-range is set equal to Li, and
the upper bound of the last sub-range is set equal to Ui. Next, the upper bound
of the first sub-range is set equal to the minimum value of the corresponding
variable, and the lower bound of the last sub-range is equal to the maximum of

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 24(1): 157–188, January 2017



SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH TABU... 169

the corresponding variable also. A number of equal-sized sub-ranges are formed
between these two boundaries.

This mechanism permits intensify the search in the region defined by the
selected current efficient solutions. Nevertheless, the extreme sub-ranges (the
first and the last sub-ranges) permit to escape of the narrow region.

3.10 Cutoff rule

Here, iglob denote the number of global iterations, that is, the number of times
that the two phases (tabu, scatter) have occurred, and maxiglob is the largest
global iteration: if (deltamax − delta ≤ 1E − 15) or (bestsol.f − prevnewsol ≤
1E − 5) or (iglob = maxiglob) then stop.

3.11 General scheme of the new TS/SS

We present a general description of our new version of our TS/SS [3] that we
call “MITS” approach for nonlinear mixed integer optimization problems.

1. Generate systematically the seed points

2. Multi-Star Tabu Search to generate diverse efficient solutions

3. Choose a subset of efficient solutions and identify the best solution so far

4. Scatter Search to generate new efficient solutions

5. Choose a subset of efficient solutions and identify the best solution so far

6. Change the radius of the ball in the decision space

7. Change the bounds of the sub-ranges

8. Restart to generate new efficient points

9. If the cutoff rule holds then stop otherwise go to 2

4 Parameter settings

A set of seven standard problems and three variants of these, for a total of ten
problems, was chosen to evaluate the performance of our proposed approach.
Numerous previous numerical experiments have been done in order to find proper
values of these parameters.
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4.1 Global parameters

The approach uses in the tabu and scatter phases, the following parameters:
s=12 number of sub-ranges, b = 450 largest size of the trial solutions set S,
b1 = 200 largest size of the reference set R, initial_points=100 numbers of ini-
tial starting points, maxiglob=100 number of maximum global iterations, delta ∈
[deltamin, deltamax] radius of the ball in the decision space, deltamin = 0.1 ×
10−5 and deltamax = 1, ϵ = 0.01 parameter to distribute the solutions
in the set P .

4.2 Tabu phase parameters

Our approach uses in the tabu phase the following parameters: fan = 60,
numcomb = starpoints/15 number of tabu iteration to apply linear combination,
b3 = 3 maximum number of tabu iteration without efficient move, ρ ∈ [0.1 ×
10−5, 0.2] radius of the ball in the objective space, wc ∈ {1

2 ,
1
3 ,

2
3 ,

3
4 ,

4
5 ,

9
10 ,

7
6 ,

6
5 ,

−7
6 ,−

6
5} parameters for linear combination, w=0.01 tabu distance.

4.3 Scatter phase parameters

In the scatter phase the following parameters are use: b2 = 20 largest size of
the selected set C, (θ1, θ2) ∈ {(0.8,±0.2), (0.9,±0.2), (1.1,±0.2), (1.2,±0.2),
(0.8, 0), (1.2, 0)} the weights to create the generator points, ρ ∈ [0.1× 10−5, 1]
radius of the ball in the objective space, α0 = 1, ∆ = 0.1 and ŝ = 6 parameters
to generator points.

5 Computational experiments

In this section we show the performance of the new version of our MOSS de-
scribed above on a number of single constrained mixed integer engineering prob-
lems. The experiments were ran in a AMD Phenom II ×4 940 Processor (3.00
GHz) 32-bit operating system, and programmed in DELFI-6.

5.1 Contribution of the scatter phase

To evaluate the contribution of the scatter phase was selected a subset of the en-
gineering problems ran in our computational experiment. In these experiments,
the only main factor is the proposed approach with two levels: tabu phase and
the tabu/scatter phases. Both the two proposed phases shared the same cut-off
rule of our approach.
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Table 1: Contribution of the scatter phase. Problems: C = Cantilever, P = Pressure
Vessel (6 inequalities), Si = Speed Reducer (integer-discrete variables), Sc =
Speed Reducer(continuous-integer variables).

Problem TS TS/SS
C 1.26397 1.15080
P 31789.82978 7197.73412
Si 3397.54157 2922.43527
Sc 6308.59874 2996.39519

Table 1 shows that the introduction of the scatter phase produces a reduc-
tion in the value of the objective functions as follows: for the Cantilever prob-
lem 8.95%, for the Pressure Vessel 77.36%, for the Speed Reducer (integer-
discrete variables) 13.98%, and Speed Reducer (continuous-integer variables)
52.5%. Is evident that the scatter phase contributes significantly in the quality of
the solution.

5.2 Convergence study

To evaluate the convergence of the approach the same subset of the above prob-
lems were chosen. The following figures show the trend of the objective func-
tion of the chosen problems. We can see that the proposed approach converges
quickly, and in all cases a feasible solution is obtained after the first iteration.
The objective function of each chosen problem decreases monotonically, and a
good approximation is obtained very quickly.

5.3 Examples

First we show an example taken from MATLAB and solved by a gradient tech-
nique implemented in MATLAB-7.

We wish optimize the following problem:

min
x

f(x) = exp(x1)(4x
2
1 + 2x22 + 4x1x2 + 2x2 + 1)

s.t.
x1x2 − x1 − x2 ≤ −1.5

x1x2 ≥ −10

−100 ≤ x1 ≤ 10

0 ≤ x2 ≤ 100.
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Figure 1: For the Cantilever problem a good approximation is reached after 50 itera-
tions and a minimum after 56 iterations. For the Pressure Vessel problem a
good approximation is reached after 11 iterations and a minimum after 15
iterations.
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Figure 2: For the Speed Reducer (continuous-integer variables) problem a good approx-
imation is reached after 27 iterations and a minimum after 47 iterations. For
the Speed Reducer (integer-discrete variables) problem a good approximation
is reached after 8 iterations and a minimum after 9 iterations.
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The result reached by MATLAB-7 is f(x∗) = 0.023698 our result is f(x∗) =
0.02355037, x∗ = (−9.54740502507853481, 1.04740502510698826).

5.4 Engineering optimization problems

A set of 10 engineering design optimization problems was chosen to evalu-
ate the performance of our proposed algorithm. We performed 5 independent
runs per problem, one run for each fixed initial value of the radius of the ball
defined in the decision space. Let delta0 denote the initial radius, delta0 ∈
{0.3, 0.35, 0.4, 0.45, 0.5}. The best results achieved were compared with re-
spect to the best results reported in the specialized literature. The value averages
here does not make sense because the best value reached will be always achieved
with the fixed delta0. The following tables show the comparison with other ap-
proaches. For homogeneity, in our reported solutions only at most the first six
decimals are represented in the tables. More details about the test problems and
the reached results may be consulted in the appendix at the end of this paper.

Table 2: Best results for the Cantilever design. The initial value delta0 was fixed to
0.35. We compare our approach with the following methods: Generalized
Convex Approximation Method GCA(I) and GCA(II) [8].

Best solution found
Variables MITS CGA(I) CGA(II)

x1 5.808324 6.01 6.01
x2 2.882334 5.304 5.304
x3 4.215829 4.49 4.49
x4 3.446026 3.498 3.498
x5 2.089881 2.15 2.15
f(x) 1.1508 1.34 1.34

Table 3: Best results for the Two-bar Truss design. The initial value delta0 was fixed
to 0.3. We compare our approach with the following methods: Generalized
Convex Approximation Method GCA(I) and GCA(II) [8].

Best solution found
Variables MITS CGA(I) CGA(II)

x1 1.412742 1.41 1.41
x2 0.374721 0.377 0.377
f(x) 1.50867 1.51 1.51
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Table 4: Best results for the Three-bar Truss design. The initial value delta0 was fixed
to 0.4. We compare our approach with the following methods: Evolutionary
Computational Technique (ECT) [29], Hernendez [21], Ray and Saini [30].

Best solution found
Variables MITS [29] [21] [30]

x1 0.792714 0.789 0.788 0.795
x2 0.396942 0.405 0.408 0.395
f(x) 263.9077 263.896 263.900 264.30

Table 5: Best results for the Welded Bean design. The initial value delta0 was fixed
to 0.45. The character (*) means infeasible solution. With our calculations
and for these reported solutions, in the Cagnina et al. method [6] the con-
straints {g2 = −0.0927002, g3 = −1e− 06, g7 = −0.0559377} do not hold,
{g1 = −0.064633, g2 = −0.1037782, g7 = −0.7577933} are violated in the
Fesanghary et al. [13].

Best solution found
Var. MITS [6] [13] [27]
x1 0.205864 0.205730 0.20572 0.20573
x2 3.463344 3.470489 3.47060 3.47049
x3 9.047746 9.036624 9.03682 9.03662
x4 0.205864 0.205729 0.20572 0.20573
f(x) 1.727036 1.724852* 1.7248* 1.724855

Table 6: Best results for the Tension/Compression Spring design. The initial value
delta0 was fixed to 0.3. The character (*) means infeasible solution. With
our calculations and for these reported solutions, in the Cagnina et al. method
[6] the constraint {g2 = 2.1812280341e − 05} does not hold, the constraint
{g2 = 0.013670727} is violated in the Mahdavi et al. [27] and the correspond-
ing function value f(x) = 0.01288.

Best solution found
Var. MITS [6] [27] [2]
x1 0.050447 0.051690 0.051154 0.05339
x2 0.327464 0.356750 0.349871 0.39918
x3 13.239984 11.287126 12.07643 9.18540
f(x) 0.012700 0.012665* 0.01267* 0.01273
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Table 7: Best results for the Pressure Vessel design (four inequalities). The initial value
delta0 was fixed to 0.4. The character (*) means infeasible solution. With our
calculations and for these reported solutions, (**) in the Mahdavi et al. [27]
the variable x4 is out of range, and in A. Kaveh and S. Talataharib [23] the
constraint {g1 = 9.88238e− 05} is violated.

Best solution found
Var. MITS [27] [23]
x1 0.875 0.75 0.8125
x2 0.4375 0.375 0.4375
x3 45.336672 38.86010 42.103566
x4 140.25502 221.36553 176.57322
f(x) 6090.5393 5849.76169** 6059.0925*

Table 8: Best results for the Pressure Vessel design (six inequalities). The initial value
delta0 was fixed to 0.45. Our approach is compared with Wu and Chow [34],
Sandgren [32], Lee and Geem [26].

Best solution found
Var. MITS [34] [32] [26]
x1 1.125 1.125 1.125 1.125
x2 0.625 0.625 0.625 0.625
x3 58.29007 58.1978 48.97 58.2789
x4 43.69312 44.2930 106.72 43.7549
f(x) 7197.734 7207.494 7980.894 7198.433
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Table 9: Best results for the Speed Reducer design (continuous-integer variables). The
initial value delta0 was fixed to 0.5. The character (*) means infeasible so-
lution. With our calculations and for these reported solutions, in the Cagn-
ina et al. method [6] the constraint {g5 = 5.9646629715e − 07, g6 =
1.3037925261e − 07} do not hold, and in the Lee and Geem [26] the con-
straint {g6 = 1.3037925261e− 07} is violated.

Best solution found
Var. MITS [6] [26]
x1 3.500026 3.500000 3.500000
x2 0.700005 0.700000 0.700000
x3 17.0 17.0 17.0
x4 7.300229 7.300000 7.300000
x5 7.800022 7.800000 7.800000
x6 3.350215 3.350214 3.350215
x7 5.286699 5.286683 5.286683
f(x) 2996.39519 2996.34816* 2996.34816*

Table 10: Best results for the Speed Reducer design (integer-discrete variables). The
initial value delta0 was fixed to 0.4. The character (*) means infeasible so-
lution. With our calculations and for these reported solutions, in the Ching-
Long Su and Shutan Hsieh [9] the constraint {g5 = 0.21147567552} is vio-
lated. Also, we compare with Singiresu et al. method [33].

Best solution found
Var. MITS [33] [9] Remarks
x1 3.3 3.5 3.5 discrete
x2 0.7 0.7 0.7 discrete
x3 17.0 17.0 17.0 integer
x4 7.3 7.3 7.3 discrete
x5 7.8 7.8 7.8 discrete
x6 3.36 3.36 3.35 discrete
x7 5.29 5.29 5.29 discrete
f(x) 2922.4352 3000.83 2998.27*
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Table 11: Computational time in seconds for the solved problems. Problems: C
= Cantilever, Tw = Two-bar Truss, Th = Three-bar Truss, Tc = Ten-
sion/Compression Spring, Pf = Pressure Vessel(four inequalities), Ps = Pres-
sure Vessel(six inequalities), Sc = Speed Reducer(continuous-integer vari-
ables), Si = Speed Reducer(integer-discrete variables).

Problem Time (secs)
C 231

Tw 30
Th 138
Tc 56
Pf 77
Ps 45
Sc 196
Si 10

6 Results

From Table 2 to Table 11 the results obtained by our approach and the compar-
ison with other approaches are shown. For the MATLAB problem the result is
0.63% lightly better than the best solution found by the method of gradient em-
ployed by MATLAB-7. For the Cantilever design problem the result is 14.1%
better than the best result found. For the Two-bar Truss design problem the result
is 0.09% lightly better than the best result found. The result for the Three-bar
Truss design problem is 0.004% lightly worse than the best result found by Raj et
al. (ECT) [29]. The result obtained for the Welded Beem design by our approach
is 0.13% worse than the result reported by Mahdavi, Fesanghary and Damangir
[27], the other results are infeasible solutions with our calculations. For the Ten-
sion/Compression Spring design the result is 0.23% lightly better than the best
result given by Arora [2], and the other results are infeasible solutions. Pres-
sure Vessel design (four inequalities) problem presents the better result, because
with our calculation and for the results reported by the other researchers, these
are infeasible solutions. For Pressure Vessel design (6 inequalities) the approxi-
mation was 0.01% lightly better than the best solution found by Lee and Geem
[26]. Our approach for the Speed Reducer design (continuous-integer variables)
problem shows the better solution because the other are infeasible solutions with
our calculation. The result for Speed Reducer design (integer-discrete variables)
is 2.6% better than result reported by Singiresu et al. [33].

In general our algorithm obtains good approximations in an average time of
120.3 seconds.
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7 Conclusions

Our approach seems to be an available strategy to solve non-linear constrained
mixed-integer optimization problems. New mechanisms were incorporated in
our TS/SS permitting to solve efficiently engineering design problems. From
the practical point of view, the user can change the user-parameter to initialize
the radius of the ball in the decision space and obtain different results. We can
conclude that our approach is competitive with the state-of-the-art algorithms for
constrained engineering optimization problems.

References

[1] Akhtar, S.; Tai, K.; Ray, T. (2002) “A socio-behavioural simulation model
for engineering design optimization”, Eng. Opt. 34: 341–354.

[2] Arora, J.S. (1989) Introduction to Optimum Design. McGraw-Hill,
New York.

[3] Beausoleil, R. (2006) “MOSS Multiobjective scatter search applied to non-
linear multiple criteria optimization”, European Journal of Operational Re-
search 169: 426–449.

[4] Beausoleil, R. (2008) “MOSS-II Tabu/Scatter Search for nonlinear multi-
objective optimization”, in: Z. Michalewicz & P. Siarry (Eds.) Advance in
Metaheuristics for Hard Problems. Chapter 3. Natural Computing Series,
Springer Verlag.

[5] Belegundu, A.D. (1982) “A study of mathematical programming method
for structured optimization”, R.I. Dept. of Civil and Environment Engi-
neering of Iowa, Iowa.

[6] Cagnina, L.C.; Esquivel, S.; Coello, C.A. (2008) “Solving engineering op-
timization problems with the simple constrained particle swarm optimizer”,
Informatica 32: 319–326.

[7] Chen, T.Y.; Cheng, Y.L. (2008) “Global optimization using hybrid ap-
proach”, WSEAS Transactions on Mathematics 7: 254–262.

[8] Chickermane, Chang, H.; Gea, H. (1996) “Structural Optimization using a
New Local approximation”, International Journal for Numerical Method
in Engineering Method 39: 829–846.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 24(1): 157–188, January 2017



180 R.P. BEAUSOLEIL

[9] Ching-Long, S.; Shutan, H. (2008) Latest Trends on Computers
(Volume II).

[10] De Jong, K. (1975) Analysis of the Behaviour of a Class of Genetic Adap-
tive Systems. Ph.D. Thesis, University of Michigan, Ann Arbor MI.

[11] Deb, K. (1991) “Optimal design of a weld beam via genetic algorithm”,
AIAA Journal 29(11): 2013–2015.

[12] Ettaouil, M.; Loqman C. (2008) “Constraint satisfaction problems solved
by semidefinite relaxations”, WSEAS Transactions on Computers 7:
951–961.

[13] Fesanghary, M.; Mahdavi, M.; Minary-Jolandan, M.; Alizadeh, Y. (2008)
“Hybridizing harmony search algorithm with sequential quadratic pro-
gramming for engineering optimization problems”, Computer Methods in
Applied Mechanics and Engineering 197: 3080–3091.

[14] Fogel, L.J.; Owens, A.J.: Walsh, M.J. (1966) Artificial Intelligence
Through Simulated Evolution. John Wiley, Chichester UK.

[15] Geem, Z.W.; Kim, J.H.; Loganathan, G.V. (2001) “A new heuristic opti-
mization algorithm: harmony search”, Simulation 76(2): 60–68.

[16] Glover, F. (1977) “Heuristic for integer programming using surrogate con-
straints”, Decision Sci. 8(1): 156–166.

[17] Glover, F. (1994) “Tabu search for nonlinear and parametric optimiza-
tion (with links to genetic algorithms”, Discrete Applied Mathematics 40:
231–255.

[18] Glover, F. (2005) “Adaptive memory projection methods for integer pro-
gramming”, in: Rego C. & Alidee B. (Eds.) Metaheuristics Optimization
Via Memory and Evolution: Tabu Search and Scatter Search. Kluwer Aca-
demic Publishers.

[19] Goldberg, D.E. (1989) “Genetic Algorithms in Search, Optimization and
Machine Learning”. Addison Wesley, Boston MA.

[20] Golinski, J. (1973) “An adaptive optimization system applied to machine
synthesis”, Mech. Mach. Theory 8(4): 419–436.

[21] Hernández, S. (1994) “Multi-objective structural optimisation”, in: S.
Kodiyalam & M. Saxena (Eds.) Geometry and Optimisation Techniques
for Structural Design, Elsevier Applied Science: 341–363.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 24(1): 157–188, January 2017



SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH TABU... 181

[22] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Univer-
sity of Michigan Press, Ann Arbor MI.

[23] Kaveh, A.; Talatahari, S. (2009) “Engineering optimization with hybrid
particle swarm and ant colony optimization”, Asian Journal of Civil Engi-
neering (Building and Housing) 10(6): 611–628.

[24] Kirkpatrick, S.; Gelatt, D.; Vecchi, M.P. (1983) “Optimization by simulated
annealing”, Science 220: 671–680.

[25] Koza, J.R. (1990) “Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve problems”, Rep. No.
STAN-CS-90-1314, Stanford University, Palo Alto CA.

[26] Lee, K.S.; Geem, Z.W. (2005) “A new meta-heuristic algorithm for
continuous engineering optimization: Harmony search theory and prac-
tice”, Computer Methods in Applied Mechanics and Engineering 194:
3902–3933.

[27] Mahdavi, M.; Fesanghary, M.; Damangir, E. (2007) “An Improved Har-
mony Search Algorithm for Solving Optimization Problems”, Applied
Mathematics and Computation 188: 1567–1579.

[28] Parsopoulos, K.E.; Vrahatis, M.N. (2005) “Particle swarm optimization for
solving constrained engineering optimization problems”, in: L. Wang, K.
Chen, & Y.S. Ong (Eds.) ICNC 2005, LNCS 3612: 582–591.

[29] Raj, K.H.; Sharma, R.S.; Mishra, G.S.; Dua, A.; Patvardhan, C. (2005)
“An evolutionary computational technique for constrained optimisation in
engineering design”, IE (I) Journal.MC 86.

[30] Ray, T.; Saini, P. (2001) “Engineering design optimisation using a swarm
with intelligent information sharing among individuals”, Engineering Op-
timisation 33: 735–748.

[31] Sahab, M.G.; Toropov, V.V.; Ashour, A.F. (2004) “A hybrid genetic algo-
rithm for structural optimization probems”, Asian Journal of Civil Engi-
neering (Building and Housing) 5(3-4): 121–143.

[32] Sandgren, E. (1990) “Nonlinear integer and discrete programming in me-
chanical design optimization”, J. Mech. Des. ASME 112: 223–229.

[33] Singiresu, S.; Ying, X. (2005) Journal of Mechanical Design 127(6):
1100–1112.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 24(1): 157–188, January 2017



182 R.P. BEAUSOLEIL

[34] Wu, S.J.; Chow, P.T. (1995) “Genetic algorithms for nonlinear mixed
discrete-integer optimization problems via meta-genetic parameter opti-
mization”, Engineering Optimisation 24: 137–159.

[35] Yeniay, O. (2005) “A comparative study on optimization methods for the
constrained nonlinear programming problems”, Mathematical Problems in
Engineering Hindawi Publishing Corporation: 165–173.

[36] Yildiz, A.R. (2008) “Hybrid Taguchi-harmony search algorithm for solv-
ing engineering optimization problems”, International Journal of Indus-
trial Engineering 15(3): 286–293.

A Appendix

A.1 Cantiliver design problem [8]

The Cantilever beam is made of five elements, each having a hollow cross-
section with constant thickness. The beam is rigidly supported as shown, and
three is an external vertical force acting at the free end of the cantilever. The
weight of the beam is to be minimized while assigning an upper limit on the
vertical displacement of the free end.

The design variables are the heights (or widths) xi of the cross-section of the
each element. The lower bounds on the these design variables are very small and
the upper bounds very large so they do not become active in the problem. The
problem is formulated as follows:

Minimize f(x) = 0.0624(x1 + x2 + x3 + x4 + x5)

s.t.
g1(x) =

61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
≤ 1.0

1 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4, 5} .

Solution found:

x∗ = (5.80832436167656592, 2.88233457568314051, 4.21582930749505342,

3.44602689729287517, 2.08988145846961546).

F ∗ = 1.150805547878516.
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A.2 Two-bar truss design problem [8]

The two-bar truss problem consist of two design variables: a sizing variable
x1 which is the cross-sectional area of the bars and the configuration variable
x2 representing half the distance between the lower nodes. An external force,
|F | = 200kN , Fy = 8Fx, acts on node 3 and the objective is to minimize the
weight of the truss while keeping the tensile or compressive stress in each bar
below 100N/mm2. The problem is formulated in closed form as:

Minimize f(x) = x1

√
1 + x22

s.t.

g1(x) = 0.124
√

1 + x22

(
8

x1
+

1

x1x2

)
≤ 1.0 (bar1),

g2(x) = 0.124
√

1 + x22

(
8

x1
− 1

x1x2

)
≤ 1.0 (bar2),

0.2 ≤ x1 ≤ 4.0, 0.1 ≤ x2 ≤ 1.6.

Solution found:

x∗ = (1.41274204233180889, 0.37472108515071976)

F ∗ = 1.508670852887466.

A.3 Three-bar truss design problem [29]

The three-bar truss problem consist of two design variables: The volume of the
truss structure is to be minimized subject to stress constraints. The problem is
formulated as:

Minimize f(x) =
(
2
√
2x1 + x2

}
L

s.t.

g1(x) =

( √
2x1 + x2√

2x21 + 2x1x2

)
P ≤ 2,

g2(x) =

(
1

x1 +
√
2x2

)
P ≤ 2,

g3(x) =

(
2√

2x21 + 2x1x2

)
P ≤ 2,
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where 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. The other constants are L = 100cm,
P = 2kN/cm2.
Solution found:

x∗ = (0.79271422810570653, 0.39694263279557871).

F ∗ = 263.90770577419977.

A.4 Welded beam design problem [11]

A welded beam design optimization problem, which is often used for the eval-
uation of optimization methods, is used to illustrate the implementation proce-
dure of the proposed approach for solving optimization problems. The beam
has a length of 14 in. and P=6,000 lb force is applied at the end of the beam.
The welded beam is designed for minimum cost subject to constraints on shear
stress, bending stress in the beam, buckling load on the bar, end deflection of
the beam, and side constraints. The design variables are thickness of the weld
h(x1), length of the weld l(x2), width of the beam t(x3), and thickness of the
beam b(x4). The mathematical model of the welded beam optimization problem
is defined as

Minimize fw(x) = 1.1047x21x2 + 0.04811x3x4(14.0 + x2)

s.t.
g1(x) = 13, 600− τ(x) ≥ 0,

g2(x) = 30, 000− σ(x) ≥ 0,

g3(x) = x4 − x1 ≥ 0,

g4(x) = 0.10471(x21)− 0.04811x3x4(14.0 + x2) + 5.0 ≥ 0,

g5(x) = x1 − 0.125 ≥ 0,

g6(x) = 0.25− δ(x) ≥ 0,

g7(x) = Pc(x)− 6, 000 ≥ 0,

0.1 ≤ x1, x2 ≤ 5

0.1 ≤ x3, x4 ≤ 10.

The terms τ(x), σ(x), Pc(x), δ(x) are given below

τ(x) =

√
(τ ′)2 + (2τ ′τ ′′)

x2
2R

+ (τ ′′)2
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τ ′(x) =
6000√
2x1x2

τ ′′(x) =
6000(14 + x2

2 )
√

0.25(x22) + ((x1 + x3)/2)2

2[x1x2
√
2(x22/12 + 0.25(x1 + x3)2)]

σ(x) =
504, 000

x23x4

δ(x) =
65, 856, 000

(30× 106)x4x33

Pc(x) =
4.013(30× 106)

√
x2
3x

6
4

36

196

1−
x3

√
30×106

4(12×106)

28

 .

Solution found:

x∗ = (0.20586359479354222, 3.46334453602819113,

9.04774674254588592, 0.20586428001618971).

F ∗ = 1.727036254666027.

A.5 Weight tension/compression spring problem [2] [5]

This problem minimizes the weight of a tension/compression spring, subject to
constraints of minimum deflection, shear stress, surge frequency, and limits on
outside diameter and on design variables. There are three design variables: the
wire diameter x1, the mean coil diameter x2, and the number of active coils x3.
The mathematical formulation of this problem is:

Minimize f(x) = (x3 + 2)x2x
2
1

s.t.

g1(x) = 1− x32x3
71785x44

≤ 0,

g2(x) =
4x22 − x1x2

12566(x2x31 − x41)
+

1

5108x21
− 1 ≤ 0,

g3(x) = 1− 140.45x1
x22x3

≤ 0,

g4(x) =
x2 + x1
1.5

− 1 ≤ 0,
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Solution found:

x∗ = (0.05044713178541634, 0.32746441361099429, 13.23998350856038107)

F ∗ = 0.012700521857.

A.6 Pressure vessel design (six inequalities)

The pressure vessel design, was previously analysed by Sandgren [32] who first
proposed this problem to minimize the total cost of the material, forming and
welding of a cylindrical vessel. There are four design variables: x1 (Ts, shell
thickness), x2 (Th, spherical head thickness), x3 (R, radius of cylindrical shell)
and x4 (L, shell length). Ts (=x1) and Th (=x2) are integer multipliers of 0.0625
in. In accordance with the available thickness of rolled steel plates, and R (=x3)
and L (=x4) have continuous values of 40 ≤ R ≤ 80in. and 20 ≤ L ≤ 60in.,
respectively. The mathematical formulation of the optimization problem is as
follows:

Minimize f(x) = 0.6224x1x2x3 + 1.7781x2x
3
3 + 3.1611x21x4 + 19.84x21x3

s.t.
g1(x) = 0.0193x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x2 ≤ 0,

g3(x) = 750.0× 1728.0− πx23x4 −
4

3
πx23 ≤ 0,

g4(x) = x4 − 240.0 ≤ 0,

g5(x) = 1.1− x1 ≤ 0,

g6(x) = 0.6− x2 ≤ 0,

Solution found:

x∗ = (1.125, 0.625, 58.2900704783923345, 43.6931234586562753)

F ∗ = 7197.73412633523851.
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A.7 Pressure vessel design (four inequalities)

Another variation of this problem, that has two inequalities minus (g5 and g6 are
eliminated) and the following bounds 1×0.0625 ≤ x1, x2 ≤ 99×0.0625, 10.0 ≤
x3, x4 ≤ 200.0 has been solved by others researchers.
Solution found by our approach:

x∗ = (0.875, 0.4375, 45.3366721064070408, 140.255022911949085).

F ∗ = 6090.53937693476024.

A.8 Speed reducer design (continuous-integer variables)

The design of the speed reducer [20], is considered with the face width x1, mod-
ule of teeth x2, number of teeth on pinion x3, length of the first shaft between
bearings x4, length of the second shaft between bearings x5, diameter of the first
shaft x6, and diameter of the first shaft x7 (all variables continuous except x3 that
is integer). The weight of the speed reducer is to be minimized subject to con-
straints on bending stress of the gear teeth, surface stress, transverse deflections
of the shafts and stresses in the shaft. The problem is formulated as follows:

Minimize f(x) = 0.7854x1x
2
1(3.3333x

2
3 + 14.9334x3 − 43.0934)

−1.508x1(x
2
6 + x27) + 7.4777(x36 + x37) + 0.7854(x4x

2
6 + x5x

2
7)

s.t.
g1(x) =

27

x1x22x3
− 1 ≤ 0,

g2(x) =
397.5

x1x22x
2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0,

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =
1.0

110.0x36

√(
745.0x4
x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1.0

85.0x37

√(
745.0x5
x2x3

)2

+ 157.5× 106 − 1 ≤ 0,
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g7(x) =
x2x3
40

− 1 ≤ 0,

g8(x) =
5x2
x1

− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

wuth 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

Solution found by our approach:

x∗ = (3.50002615416866586, 0.70000523059661887, 17, 7.30022922985589972,

7.8000228842193966, 3.35021507672250302, 5.28669973187709912).

F ∗ = 2996.3951944729081.

A.9 Speed reducer design (integer-discrete variables)

Another variation of this problem with the variables defined as follows: x1, x2,
x4, and x5 must be integral multiples of 0.1. x6 and x7 must be integral multiples
of 0.01, and x3 must be an integer.

Solution found by our approach:

x∗ = (3.3, 0.7, 17.0, 7.3, 7.8, 3.36, 5.29).

F ∗ = 2922.43527186608.
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