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Abstract

In this work, we consider the diffusion-controlled axisymmetric
fracture in an infinite space, and half-space. An important example
of diffusion-controlled fracture growth is given by hydrogen induced
cracking. In metals, hydrogen is typically dissolved in the proton
form. When protons reach the crack surface, they recombine with
electrons and form molecular hydrogen in the crack cavity. Then, the
fracture can propagate even in the absence of any external loading,
that is, only under the excessive pressure of gas hydrogen accumu-
lated inside the crack.

Our results show that in the long-time asymptotic approximation
(based on the quasi-static solution), the diffusion-controlled delami-
nation propagates with constant velocity. We determine a maximum
critical concentration that limits the use of the quasi-static solution.
A transient solution, representing a short-time asymptotic approx-
imation, is used when the concentration of gas exceeds the critical
concentration. We then match these two end-member cases by us-
ing the method of Padé approximations and present closed-form so-
lutions for both internal and near-surface diffusion-controlled crack
propagation at different time scales.

Keywords: diffusion, crack propagation, asymptotic analysis, Padé
approximation.

Resumen

En este trabajo, consideramos la fractura de difución controlada
axisimétrica en un espacio infinito, y en el semiespacio. Un ejemplo
importante del crecimiento de una fractura de difusión controlada
es dado por el hidrógeno inducido en agrietamiento. En metales,
el hidrógeno es t́ıpicamente disuelto en forma de protones. Cuando
los protones alcanzan la superficie de la grieta, se recombinan con
electrones y forman hidrógeno molecular en la cavidad de la grieta.
Entonces, la fractura puede propagar aún en ausencia de cualquier
carga externa, esto es, sólo bajo presión excesiva de gas hidrógeno
acumulado dentro de la grieta.

Nuestros resultados muestran que en la aproximación asintótica a
largo plazo (basada en la solución cuasiestática), la delaminación de
difusión controlada propaga con velocidad constante. Nosotros de-
terminamos una concentración cŕıtica máxima que limita el uso de la
solución cuasiestática. Una solución transitoria, que representa una
aproximación asintótica de corto plazo, es usada cuando la concen-
tración del gas excede la concentración cŕıtica. Entonces apareamos
estos dos casos usando el método de aproximaciones de Padé y pre-
sentamos soluciones en forma cerrada tanto para propagación de grie-
tas de difusión controlada internas como cercanas a la superficie, en
diferentes escalas de tiempo.
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1 Introduction

Hydrogen is known to reduce the fracture resistance of many metals and
steels, and thereby affect the behavior of engineering structures [e.g., Hirth,
1984; Panasyuk et al., 1987; Hick and Alstetter, 1992; Zhong et al., 1993].
Hydrogen absorbed by a metal is usually dissolved in the lattice in the
proton form [e.g., Turnbull, 1993; Vehoff, 1997; Krom et al., 1999]. Some
of the protons reach the surface of pre-existing or freshly created cracks
where they react with electrons and form molecular hydrogen in the crack
cavity [e.g., Zapffe and Moore, 1943; Van Leeuwen, 1974; Turnbull, 1993;
Gonzales et al., 1997]. Because the effective radius of hydrogen molecules
usually exceeds the size of vacancies in the lattice cell, the molecular form of
hydrogen is thermodynamically more stable near the crack surfaces, which
leads to accumulation of gas hydrogen inside the crack. As a result of
excessive hydrogen pressure, fracture often takes place even in the absence
of any external loading [e.g., Eliaz et al., 2004; Turnbull, 1993; Vehoff, 1997]
and such a process is usually called hydrogen-induced cracking (HIC).

In this work, we consider an importan case of HIC hydrogen-induced
delamination (HID) that occures as a separation of a surface layer from the
solid (Figure 1) caused by hydrogen embrittlement in metals [e.g., Speidel,
1984; Turnbull, 1993; Vehoff, 1997]. In particular, a common feature of
HIC in pipes [Gonzalez et al., 1997], is that the fractures propagate in the
direction parallel to the pipe wall. In time, such delaminations spread,
damaging the pipe wall, which often results in the pipeline fracture and
its premature replacement [Gapharov et al., 1998]. Understanding the
mechanism of HID may improve the design and safety of pipelines.

Various models of growth of internal cracks (i.e., far from the surface)
that are pressurized by inflow of hydrogen have been considered, for exam-
ple, by Goldstein et al. [1977 and 1985], Panasyuk et al. [1987], Balueva
and Dashevski [1995], Vehoff [1997], and Toribio and Kharin [1998], Eliaz
et al., 2004]. A similar HID model has been considered by Gonzalez et
al. [1997]. The model assumes that upon crack extension, the volume of
the crack cavity increases resulting in the decrease of hydrogen pressure,
which causes the crack to arrest. As the cavity continues to be filled with
hydrogen, the crack propagation continues as well. Gonzalez et al. [1997]
also conducted an experimental study with carbon steel in the form of pipe
using ultrasonic inspection to measure crack sizes. Using the steady-state
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approximation for hydrogen diffusion, Gonzalez et al. [1997] obtained a
closed-form solution for the crack growth rate, which agreed well with their
experimental results corresponding to the initial stages of the crack growth.
However, their model agrees less satisfactory with the experimental results
for large crack sizes, which may not be very surprising. Indeed, as pointed
out by by Goldstein et al. [1977], a theory based on the steady-state ap-
proximation ceases to be accurate for large crack sizes because the diffusion
process becomes slower than the fracture growth. A transient HID model
is needed for large crack sizes, when the delamination may become more
dangenerous because due to the interaction with the free surface, hydrogen
inflow may not be needed anymore for the fracture growth and the growth
may become unstable.

In this paper, a transient model of a penny-shaped delamination con-
trolled by a diffusion process is considered. We obtain the delamination
size, velocity of growth, and time of incubation. We also present a quantita-
tive analysis of the results for hydrogen diffusion and metal embrittlement.

2 Near surface delamination

2.1 Delamination kinetics

Let a half-space z < 0 (e.g., a substrate of the base metal), saturated
uniformly by fluid with concentration c0, be covered by a thin infinite
layer of thickness h. Suppose a circular delamination of the initial radius,
a0, appears in the interface, z = 0, at t = 0 (Figure 1). The covering
layer is assumed to be thin compared to a0 (h � a0). As delamina-
tion develops, the crack opening, w, under the fluid pressure, p (Figure
1), can be determined in the asymptotic approximation of thin plates
[e.g., Timoshenko and Goodier, 1970] as w(r) = pa4(1 - r2/a2)/(64D0),
where D0 = Eh3/[12(1 − ν2] is the plate flexural rigidity, E and ν are
the Young modulus and Poisson ratio of the delaminated material. In
the axisymmetric case, the potential energy of bending of a circular plate
is U = p2a6/(384D0). In the framework of beam (plate) asymptotic ap-
proximation [e.g., Rice, 1968], only the bending part of the strain energy
contributes to the energy release rate, G. Hence, the rate of energy ab-
sorption by the growing delamination per unit length of the crack front
can be expressed as G = −1/(2πa)∂U/∂a. Therefore, because for a stably
growing fracture, G = 2γ, the connections between the fracture energy, γ,
crack radius, a, crack volume, V , and the fluid pressure, p, can be written
as

2γ =
p2a4

128D0
, V = 2π

∫ a

0
w(r)r dr. (1)
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Figure 1: Delamination growth under the pressure of the fluid accumulated
in the crack.

The constitutive relation, p = f(ρ), between the fluid pressure, p, inside
the crack and fluid density, ρ = m/V , can be written in the form of

p = f

(

1

V

∫ t

0
Q(t) dt

)

, Q(t) = 2π

∫ a(t)

0
q(r, 0, t)r dr (2)

where Q(t) is the full fluid flux into the crack, the first integral in (2) rep-
resents the total gas mass accumulated inside the crack by time t, q(r, z, t)
is the diffusion flux. In many cases [e.g., Goldstein et al., 1985], the hydro-
gen gas in the crack can be modeled as an ideal gas in isothermal condi-
tions. Then, the constitutive relation p = f(ρ) becomes a linear function
p = RTm/V , where R = 8.314J/(mole ∗0 K) is the ideal gas constant and
T is the gas temperature (in 0K). Substituting expressions (1) for crack
volume and critical energy release rate into (2), we arrive at the main
kinetic equation

a2γ =
3

4π
RT

∫ t

0
Q(t) dt (3)

for the transient analysis of the quasi-stationary growth of a penny-shaped
delamination. In this consideration, we further need one more relationship
between functions a(t) and Q(t) that can be obtain by considering hydro-
gen (proton) diffusion in metall latice towards the propagating fracture
(Figure 1).
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2.2 Diffusion flux into delamination

If the flux density, q, is the result of diffusion into delamination, it can be
found from the usual boundary value problem for the hydrogen concentra-
tion, c, in metal (expressed in moles per unit volume due to the chosen
dimenison of R):

∂c

∂t
= D

[

∂2c/∂2z + (1/r)∂/∂r(r∂c/∂r)
]

(z < 0, t > 0, r > 0)

c = c0 (z → −∞, r > 0, t > 0), c = c0 (z < 0, r > 0, t = 0)

∂c

∂z
= 0 (z = 0, r > a(t), t > 0), c = 0(z = 0, 0 < r < a(t), t > 0). (4)

where D is the diffusion coefficient of atomic hydrogen in metal. Then,
q = −D∂c/∂z(z = 0, 0 < r < a) and the full flux into the delamination
can be determined from Q(t) in (2). If Q(t) is expressed through a(t),
after substituting Q(t) into (3), the main kinetic equation for a(t) will be
derived.

In the case of hydrogen embrittlement, the second condition in (4),
c(r, 0, t) = 0 at 0 < r < a(t), means that if the pressure inside the de-
lamination crack is not too large, the crack can be modeled by an ideal
sink so that the molecular gas hydrogen accumulates inside the crack [e.g.,
Goldstein et al., 1977 and 1985; Gonzales et al., 1997; Eliaz et al., 2004],
while the concentration of atomic hydrogen there is zero.

In general, the boundary value problem (4) can only be solved numer-
ically [Eliaz et al., 2004]. However, there are at least two extreme cases
when asymptotic consideration allows one to determine c(r, z, t) and, then,
the parameters of the delamination growth in the closed form. These are
the cases of short, t � a2/D, and long times, t � a2/D, where a2/D = td
is the diffusion time scale, which is of the order of the relaxation time re-
quired to establish the equilibrium steady state for the hydrogen diffusion
around the delamination.

3 Asymptotic solution for long and short times

3.1 Asymptotic solution for long times

If delamination growth is slow enough so that the delamination time, t,
is much smaller than the diffusion (relaxation) time scale, td = a2/D,
required to establish the steady state in the delamination proximity, at
each moment, t, the diffusion flux, q, into the delamination can be found
from the solution of the corresponding steady-state diffusion problem. We
will refer to this as to the asymptotic solution for long times. Then, for
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each time, t, we should find the concentration function, c(r, z, t), which is
harmonic ( ∆c = 0) in the half-space, z < 0, and satisfies the boundary
conditions from (4).

The solution of this boundary value problem is well known [e.g., Sned-
don, 1972]. In particular, the expression for the flux density,
q = −D∂c/∂z(z = 0, 0 < r < a) , is given by q(r, 0, t) = (2/π)c0D[a(t)2 −
r2]−1/2, so that the volumetric flow rate in (2) into the crack can be written
as Q(t) = 4c0Da(t). Substituting this Q(t) into (3), we finally obtain the
kinetic equation for the delamination growth driven by the ideal gas and
controlled by diffusion:

a2γ =
3

4π
RTDc0

∫ t

0
a(t)dt. (5)

At the first stage, that is, during the incubation period, 0 < t < ti,
the fluid diffuses into the delamination, accumulates inside it, and creates
the pressure sufficient for starting the delamination growth. Since at this
stage, a(t) = a0 = const for t < ti , we can write from (5) the expression
for the incubation time, ti , as follows:

ti =
πγa0

3RTDc0
. (6)

The velocity, da/dt, of crack growth is obtained by differentiating both
parts of equation (5) with respect to t: da/dt = 3RTDc0/(2πγ) = a0/(2ti).
This expression reveals that the delamination develops with a constant
velocity. Such a stationary process of the crack growth is provided by
the balanced increase of the gas pressure caused by the fluid diffusion
into the crack and by the gas pressure decrease, caused by the increase
in the volume of the growing crack. Of course, the velocity is not exactly
constant but only with the accuracy of the higher assypmtotic terms that
are neglected. In this approximation, time is considered to be a parameter
and enters the equation set not through diffusion process, assumed to be
fast, but through the kinetic equation (5).

3.2 Asymptotic solution for short times

The stationary solution for fluid flux into the crack is valid for long times,
t � a2/D, and provides an upper estimate for the growth time, t(a).
Further insight can be gained by turning to a transient solution for the
fluid flux. The leading asymptotic term for the fluid diffusion into the
delamination for a short time, t � a2/D, is given by the one-dimensional
approximation in z-direction (Figure 1), so that the fluid diffusion in the
radial direction is only given by the quantities of the higher order with
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respect to t [Germanovich and Kill’, 1985; Germanovich, 1986]. Accord-
ingly, the first-order solution of the transient problem (4) can be found by
considering the latter as independent of r and is well known [e.g., Carslaw
and Jeager, 1992]. Then, for t < ti and z ≤ 0,

c(z, t) =

{

−c0 erf z
2
√

Dt
(r < a0), erf(x) = 2√

π

∫ x
0 e−y2

dy

c0 (r > a0)
(7)

Once the delamination front reaches position a(t), the concentration
function c = a(r, t) is asymptotically given by the same expression (7)
where t should be replaced by t − τ(r), where τ(r) is the time at which
the crack radius, a, reaches the value of r; so that τ(a) = a−1(τ) is the
function inverse to a(t). Then, the flux into the delamination is given by
q = −D∂c/∂z (z = 0, 0 < r < a, t > 0), so that substituting expression (2)
for Q(t) into (3), we obtain the kinetic equation for a(t) in the short time
asymptotic approximation:

a2(t) =
3c0

2πγ
RT

√
πD

[

a2
0

√
t + 2

∫ a(t)

a0

√

t − τ(a)a da

]

(8)

Noticing that a(t) = a0 during the incubation period, t < ti, we find
from (8) the incubation time, ti. By this time, a sufficient gas pressure
is accumulated in the delaminated space (opening) and the fracture starts
growing at

ti =
4πγ2

9c2
0R

2T 2D
. (9)

Substituting ti from (9) into (8) and integrating by parts, (8) can
be reduced to the well known Abel integral equation of the second kind
[Polyanin and Manzhirov, 1998], which has the following solution:

a2(t) = a2
0

[

F (t) +
π

ti

∫ t

ti

F (τ) exp
π(t − τ)

4ti
dτ

]

, (10)

where F (t) = (1/2)
{

[2t1/2 − (t − ti)
1/2]/t

1/2
i − (t/ti) arcsin[(t

1/2
i /t1/2)]

}

+

π/4. From (10), the delamination growth velocity is
da/dt = (1/2)[a2

0/a(t)][dF/dt + (π/4)(1/ti)(a
2(t)/a2

0)]. In this case, the
delamination velocity is not constant.
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Figure 2: Dependence of dimensionless incubation time, t́ = ti/t0, on
normalized hydrogen concentration, ć = c0/c∗, in the approximation of
long (curve 1) and short (curve 2) times.

4 Examples

Figure 2 shows the dependence of the normalized incubation time, t́i =
ti/t0, on the dimensionless fluid concentration in the material, ć0 = c0/c∗,
where c∗ = 2γ/(a0RT ). Curves 1 and 2 in Figure 3 correspond to the
incubation times in the long and short time approximations, respectively.
Line 3 shows the Padé asymptotic approximation.

Figure 3 shows dependence of the normalized delamination radius, á =
a/a0 , on the normalized growth time, t́ = t/t0, in the long (lines 1)
and short (lines 2) time approximation for three values of the initial fluid
concentrations: (a) large, ć0 = 3.33, (b) intermediate, ć0 = 2/3, and (c)
small, ć0 = 0.133.
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(a) Large, c′

0
= 3.33,. (b) Intermediate, c′

0
= 2/3.

(c) Small, c′

0
= 0.133.

Figure 3: Dependence of the normalized delamination radius, a′ = a/a0, on
the normalized growth time, t′ = ti/t0, in the long (lines 1) and short (lines
2) time approximations for three values of the initial fluid concentrations.
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5 Conclusions

Our results show that in the long-time asymptotic approximation (based on
the quasi-static solution), the diffusion-controlled delamination propagates
with a finite velocity, which remains constant during the growth. In this
paper, we determine a maximum critical concentration that limits the use
of the quasi-static solution. A transient solution, representing a short-
time asymptotic approximation, is used when the concentration of gas
exceeds the critical concentration. We then match these two end-member
cases by using the method of Padé approximations and present closed-
form solutions for both internal and near-surface diffusion-controlled crack
propagation at different time scales.

An application of the developed asymptotic modes is demonstrated on
the example of propagation of the near-surface and internal cracks driven
in metal by the diffusion of the atomic hydrogen (protons). We show
that for typical properties of low alloy steels in hydrogen embrittlement
conditions, the approximation of long times is usually valid. However,
depending upon the parameters, the metal durability (life-to-failure) varies
rather considerably, i.e., from hours to decades.

The obtained results reveal some intriguing features worth checking
experimentally. For example, the main kinetic equations for growth of the
near-surface (delamination) and internal fractures [Goldstein et el.1985]
are essentially identical, despite the difference in the problem geometry.
Consequently, although the driving pressures for identical axisymmetric
fractures located far and close to the half-space boundary are very different,
their radii and velocities are exactly the same. This, perhaps, indicates
that the approach adopted in this work is sufficiently robust to simulate
delaminations of not necessarily small thicknesses.
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