DOI: https://doi.org/10.15517/rce.v42i2.55159

ACTIVIDADES INTENSIVAS EN CONOCIMIENTO EN COSTA RICA: UNA APROXIMACIÓN PARA MEDIR LA BASE DE CONOCIMIENTO DE LA ECONOMÍA

KNOWLEDGE-INTENSIVE ACTIVITIES IN COSTA RICA: AN APPROACH TO MEASURE THE ECONOMY'S KNOWLEDGE BASE

Esteban Durán-Monge¹ María Santos Pasamontes² Amram Aragón³

Recibido: 17/05/2023 Aprobado: 21/02/2024

RESUMEN

Mediante técnicas de clusterización se ajusta al país un indicador definido por Eurostat para identificar las actividades intensivas en conocimiento (AIC). Su aplicación evidencia la exigua penetración de las AIC en la estructura económica, dada su participación en la producción (39,2%), así como en el mercado laboral (30,7%). Las dos actividades que más contribuyen a la producción no califican como AIC, tampoco la relacionada con "alta tecnología" y responsable del primer bien de exportación. Al excluir las ramas de Educación y Salud su aporte a la producción se reduce al 27,9%. El escaso peso de las AIC vinculadas con ciencia y tecnología en el empleo (18%) y en la producción (8,3%) dificulta las aspiraciones de competir globalmente como una sociedad del conocimiento basada en la innovación. Las AIC se acentúan en el sector servicios (38,3%); su participación en manufactura es mínima (6,3%) y nula para el sector agropecuario.

PALABRAS CLAVE: ECONOMÍA DEL CONOCIMIENTO, DESARROLLO ECONÓMICO Y SOCIAL, CAPITAL HUMANO, EDUCACIÓN TERCIARIA, PRODUCCIÓN, EMPLEO. CLASIFICACIÓN JEL: 0300.

ABSTRACT

Using clustering techniques, an indicator defined by Eurostat is adjusted to the country to identify knowledge-intensive activities (KIA). Its application shows the meager penetration in the economic structure given its participation in production (39.2%), as well as in the labor market (30.7%). The two activities that contribute the most to production do not qualify as KIA, nor does the one related to "high technology" and responsible for the main

¹ Consejo Nacional de Rectores, Programa Estado de la Nación; Código Postal: 10109; San José, Costa Rica; eduran@ estadonacion.or.cr

² Consejo Nacional de Rectores, Programa Estado de la Nación; Código Postal: 10109; San José, Costa Rica; msantos@ estadonacion.or.cr

³ Consultor independiente; Código postal: 30801; Cartago, Costa Rica; amrran.aragon@gmail.com

export product. By excluding the branches of Education and Health, the contribution to production is reduced to 27.9%. The low weight of KIAs linked to Science and Technology in employment (18%) and in production (8.3%) hinders the aspirations of competing globally as a knowledge society based on innovation. The KIA are accentuated in the service sector (38.3%); its participation in Manufacturing is minimal (6.3%) and null for the agricultural sector.

KEYWORDS: KNOWLEDGE ECONOMY, ECONOMIC AND SOCIAL DEVELOPMENT, HUMAN CAPITAL, TERTIARY EDUCATION, PRODUCTION, EMPLOYMENT.

JEL CLASSIFICATION: 0300.

I. INTRODUCCIÓN

Costa Rica aspira a generar crecimiento, competitividad y bienestar mediante su conversión hacia una economía moderna basada en el conocimiento. Aunque el concepto de economía de conocimiento es ampliamente utilizado, no existe una única definición y, en general, se concibe como una sociedad donde una considerable proporción de la producción se basa en el conocimiento acumulado⁴. Una sociedad con tales propiedades generaría más y mejores empleos, podrá aspirar a un desarrollo sostenible e inclusivo y, por ende, mayor bienestar. Entre los elementos esenciales de una economía basada en el conocimiento está el desarrollo dinámico de muchas actividades intensivas en conocimiento (AIC), claves para la transición desde una economía de ingreso medio a una economía de ingreso alto.

Las AIC se conciben como un factor medular en una economía del conocimiento como fuente de innovación tecnológica, organizacional y social, en la medida en que constituyen un grupo de actividades que impulsan los procesos de innovación que influencian la calidad y eficiencia de las distintas funciones empresariales (Pejić Bach et al., 2021, p.1). En esa medida, el peso que tienen en el empleo en los países puede utilizarse como un indicador del grado de desarrollo como una economía basada en el conocimiento.

A pesar de que el país se proyecta a nivel internacional mediante una estrategia de "3Ps" (*People, Planet, Prosperity*), donde el talento es el principal recurso y se posiciona como el Silicon Valley de Latinoamérica por su "localización propicia para la transformación de toda la empresa por ser Costa Rica una economía de servicios intensivos en conocimiento" (Cinde, 2022), no se han desarrollado estudios que de manera empírica delimiten cuáles son esas actividades y su actual huella en la economía nacional.

Para subsanar ese vacío de información, el presente estudio aplica criterios objetivos para determinar si una actividad es intensiva en conocimiento. Para ello, se propone responder una serie de interrogantes de investigación. Las primeras, de índole metodológica, son: ¿cómo definir y caracterizar las actividades intensivas en conocimiento en Costa Rica siguiendo indicadores utilizados en países desarrollados?, ¿cómo definir un indicador basado en un umbral ajustado a la realidad de un país como Costa Rica? Asimismo, buscará responder otra pregunta de carácter empírico: ¿cuánto contribuyen las AIC al empleo y a la producción del país?

Al responder a las interrogantes anteriores, el presente trabajo –de naturaleza descriptiva y exploratoria– busca generar un marco metodológico que, partiendo de un indicador que cumple con parámetros internacionales pero ajustado a las condiciones locales, permita valorar la medida en que la sociedad costarricense dista de convertirse en una sociedad basada en el

⁴ Powell y Snellman (2004, p. 1) la definen como aquella cuya producción y servicios se basan en actividades intensivas en conocimiento, las cuales contribuyen a un ritmo acelerado de avances técnicos y científicos, así como a una rápida obsolescencia. De acuerdo con estos autores, su atributo principal es una mayor dependencia en las capacidades intelectuales que en insumos físicos o recursos naturales.

conocimiento en virtud de la penetración de las AIC en la estructura económica del país. Ello, dada su participación en el empleo y en la producción. Su identificación permitirá monitorear su impacto en la productividad y estudiar las eventuales rutas de convergencia de Costa Rica con economías desarrolladas en virtud de estas actividades. Asimismo, el estudio procura sentar una línea basal que permita monitorear su variación en el tiempo.

Su análisis y seguimiento podrá tener implicaciones para la investigación académica en futuros estudios, al ser la penetración de las AIC un factor que puede contribuir a comprender los bajos niveles de productividad del país. Por otro lado, para política pública, la aplicación del indicador genera insumos que contribuyen a orientar los avances necesarios para alcanzar los altos niveles de competencias y conocimiento avanzado requeridos para un país que precisa incorporar a más talento en AIC para superar la trampa del ingreso medio.

El documento se organiza en cinco secciones incluyendo la introducción. La sección II aborda una revisión de la literatura relacionada con el tema. En la tercera se presenta la metodología utilizada y las fuentes de información. La cuarta expone los principales hallazgos del estudio; y la quinta y última discute las principales conclusiones que se derivan del trabajo.

II. ANTECEDENTES

A pesar de no contarse con un concepto claro que delimite las AIC, en las últimas décadas la literatura ha adjudicado especial atención al papel que tienen sobre todo los servicios intensivos en conocimiento en la transición hacia una economía basada en el conocimiento (Kuznetsov & Dahlman, 2008; Muller & Doloreux, 2009; Shi et al., 2014, p. 2-3; Simmie & Strambach, 2006; Zhou & Wang, 2020). Varios autores han destacado que los servicios intensivos en conocimiento como I+D (investigación y desarrollo), tecnologías de la información y la comunicación (TIC) y otros servicios empresariales favorecen los procesos de innovación de manera directa e indirecta. Esto por cuanto actúan como fuentes de innovación al intervenir como vehículo y como fuente de conocimiento que influencia el desempeño de las organizaciones, cadenas de valor y clústeres industriales de manera transversal (Organización para la Cooperación y el Desarrollo Económico [OCDE], 2006, p. 5). Godlewska-Dzioboń et al. (2019, p. 2) van más allá y señalan que contribuyen no solo mediante la difusión de conocimiento e innovación a la creación y transferencia de tecnología moderna, sino también a un aumento en la productividad y, por ende, a acelerar el crecimiento económico, y en esa medida serían un reflejo del potencial innovador de la sociedad. Otro factor que explica la creciente relevancia de los servicios intensivos en conocimientos es el hecho de que se han vuelto transversales al resto de la economía a partir del proceso conocido como servitization, que ha desdibujado las fronteras preexistentes entre los bienes y los servicios (Niembro, 2020, p. 3).

Debido a esa falta de definición inicial, el concepto se aproximó utilizando varias metodologías para identificar la intensidad tecnológica: el enfoque sectorial y el de producto. El enfoque sectorial parte de una agregación de las actividades industriales según intensidad tecnológica con base en el gasto en I+D, como proporción del valor agregado, y mezcla dos metodologías: una para industrias manufactureras y otra para servicios. La primera clasificación utiliza las siguientes categorías para distinguir el nivel de intensidad en I+D: alta, media alta, media baja y baja intensidad tecnológica. Esta clasificación es de carácter relativo, por cuanto se basa en el promedio ponderado de la intensidad en I+D de los sectores industriales de un país (OCDE, 2011, p. 180). En el caso de los servicios, debido a que según los autores la inversión formal en I+D ha sido menos frecuente en ese sector que en manufactura, se ha recurrido a otras métricas como el uso de encuestas de innovación o la composición de competencias en la fuerza de trabajo, y se agruparon principalmente en las siguientes categorías: servicios intensivos en conocimiento (en inglés

Knowledge Intensive Services o KIS) y servicios menos intensivos en conocimiento (en inglés Low Knowledge Intensive Services o LKIS) (OCDE, 2011, p. 167).

El enfoque basado en producto se creó para complementar el enfoque sectorial y es utilizado para clasificar datos en comercio de alta tecnología. La lista de bienes se basa en estimaciones de intensidad de I+D (gasto en I+D como proporción del total de ventas) en grupos de productos. Los grupos de productos clasificados como de alta tecnología son agregados con base en la *Standard International Trade Classification* (SITC) (Eurostat, 2020).

La clasificación de "Actividades Intensivas en Conocimiento" (AIC) utilizada en el presente estudio se basa en el indicador definido con ese mismo nombre por la Oficina Estadística de la Unión Europea⁵. De acuerdo con este indicador, una actividad es intensiva en conocimiento si las personas ocupadas con educación terciaria (incluyendo niveles de cualificación de diplomado a doctorado) representan al menos el 33% del total del empleo en esa actividad⁶ (European Commission, 2008; Eurostat, 2022a).

Este enfoque, si bien se deriva del enfoque sectorial, en contraste con su primera versión, de carácter relativo, tiene las ventajas de que se basa en una única metodología para todos los sectores industriales y de servicios, cubriendo también las actividades del sector público y parte de un indicador que permite una medición objetiva. Tal propiedad facilita la realización de estudios de benchmarking internacional, que cobra importancia luego de la reciente incorporación de Costa Rica como miembro de países de la OCDE.

La escogencia de una definición conlleva consecuencias para el análisis de casos sobre todo para economías como las latinoamericanas, en las que el desempeño del sistema educativo dista del de los países de la Unión Europea. Consecuentemente, una limitante a la expansión de las AIC, dada la definición del indicador que se utiliza en el estudio, viene del grado de penetración de la educación terciaria en los países. Este es un factor crítico para la costarricense ya que tan solo el 46,4% de la población entre 25 y 39 años cuenta con secundaria completa y el 30,2% con educación superior (Instituto Nacional de Estadística y Censos [INEC], 2022b, p. 19). Adicionalmente, el número absoluto de títulos otorgados por las instituciones costarricenses de educación superior se ha estancado en los últimos años, por lo que no sorprende que, aunque la proporción de adultos jóvenes con educación superior es más alta comparada con la de algunos países de la región (como Brasil, Colombia y México), está por debajo del promedio de la OCDE (2023, p. 97).

Esa debilidad, entre otras que incluyen los altos costos salariales, coloca al país en la trampa del ingreso medio al afectar sus posibilidades de desarrollar nuevas capacidades para competir en el mercado de alto valor agregado apoyándose en activos del conocimiento. Tanto para superar esa coyuntura, así como para atraer Inversión Extranjera Directa (IED) más intensiva en tecnología, se ha insistido en la necesidad de implementar reformas en la estructura productiva que faciliten transformaciones hacia modelos económicos más vinculados con el conocimiento y las competencias, y que aborden la mejora en las capacidades existentes en la formación de capital humano calificado que demanda la innovación tecnológica (Monge-González & Rivera, 2022, p. 16; Sevilla & Dutra, 2016, p. 5).

⁵ En inglés "Knowledge Intensive Activities" o KIA.

⁶ La definición se basa en el número promedio de personas empleadas con edades entre 15-64 años a los niveles de agregación EU-27 de 2008 y 2009 con base en la clasificación estadística de actividades económicas –referida en inglés como NACE Rev. 2# y utilizada por la Comisión Europea– a dos dígitos y utilizando los datos de la encuesta "EU Labour Force Survey" (European Commission 2008; Eurostat, 2022a).

III. METODOLOGÍA

A fin de generar una especificación de AIC adaptada a la realidad costarricense, pero que cumpla con parámetros internacionales que habiliten la comparabilidad, se propone una metodología ajustada con datos nacionales, cuya aplicación permita determinar empíricamente la importancia de la AIC en la economía costarricense, mediante una estimación de su contribución en el empleo y la producción.

Especificación de los indicadores de AIC

La identificación de AIC se basa en los criterios del indicador de IAIC-Eurostat propuesto por la Oficina Estadística de la Unión Europea (Eurostat, 2022a), según el cual una actividad es intensiva en conocimiento si las personas ocupadas en dicha actividad que poseen el grado académico de educación terciaria (considerando los niveles desde diplomado a doctorado), representan más del 33% del total del empleo en esa actividad.

Dado que el indicador se construye mediante un análisis estadístico basado en las condiciones que ostentan las 27 naciones europeas, y a partir de datos de la Encuesta de Fuerza Laboral de la Unión Europea, se realiza un análisis con el objetivo de determinar un punto de quiebre o umbral según la distribución de los datos y realidad de Costa Rica. Esto permite obtener un indicador de AIC ajustado para el caso costarricense (AIC-CR), que considera la penetración de la educación terciaria local y su participación en el empleo. Según se especifica más adelante el punto de quiebre según este nuevo umbral es en 27,2% de ocupados con educación terciaria.

Siguiendo la metodología de Eurostat, se genera una variación adicional de la clasificación de AIC ajustada a Costa Rica, pero enfocada en AIC más cercanas a industrias empresariales (AIC-CR-Negocios), esto es, excluyendo las áreas de Educación y Enseñanza. Esta es análoga al indicador de Eurostat: actividades intensivas en conocimiento en negocios reportada en inglés como "Knowledge Intensive Activities -Business Industries" o KIABI (Eurostat, 2022a).

Como las AIC cubren todos los sectores de la economía y las mujeres tienen a estar sobrerepresentadas en sectores como educación y salud, utilizar el indicador AIC-CR-Negocios enfocado en el sector empresarial facilita discernir la participación de hombres y mujeres a través de las actividades que tienden a ser intensivas en conocimiento. Tal y como lo reporta la Comisión Europea, examinar el empleo de hombres y mujeres en el sector industrial aplicando el indicador AIC-CR-Negocios es útil para comprender el uso del capital humano disponible en un área prioritaria de la economía al proporcionar insumos sobre barreras potenciales para el reclutamiento de mujeres altamente calificadas en este sector del mercado laboral (European Commission, 2021, p. 70).

Finalmente, se genera una tercera variación de la clasificación enfocada en áreas científicotecnológicas (AIC-CR-CyT). Es de interés conocer y poder monitorear el grado de penetración de las AIC en este ámbito dada la importancia de la ciencia, la tecnología y la innovación (CTI) como motor para un desarrollo sostenible de la sociedad costarricense (PEN, 2014, p. 25). Adicionalmente, dada la formulación de política pública dirigida a la atracción de IED en áreas de alto contenido tecnológico de la industria manufacturera, así como con la priorización de áreas estratégicas definidas por el Estado: Bioeconomía, investigación Biomédica y TIC (Poder Ejecutivo, 2020; Micitt, 2021). Esta variante se construye bajo la misma metodología del indicador ajustado a Costa Rica, pero se utiliza como variable analítica el porcentaje de personas con educación terciaria, empleadas en ocupaciones clasificadas dentro de las áreas de conocimiento científico-tecnológicas. Según se especifica más adelante, el punto de quiebre de acuerdo con este nuevo umbral es en 26,2% de ocupados con educación terciaria.

Fuentes

Con el objetivo de estimar un indicador análogo al IAIC-Eurostat para el caso de Costa Rica, se utiliza como primera fuente de información la Encuesta Nacional de Hogares (ENAHO) del Instituto Nacional de Estadística y Censos (INEC, 2022a). Esta permite realizar estimaciones estadísticas de personas ocupadas según ramas de actividad económica y nivel de formación. Las estimaciones se basan en la desagregación de actividades económicas a dos dígitos (esto es, a nivel de división) según la Clasificación de Actividades Económicas de Costa Rica (CAECR) (INEC, 2013a) que es una adaptación de la Clasificación Industrial Internacional de todas las actividades económicas (CIIU) revisión cuatro. Además, una vez identificadas las AIC según los distintos criterios explorados en este trabajo, estos datos permiten analizar la participación de estas actividades en el empleo nacional.

La segunda fuente de datos es la Matriz Insumo Producto (MIP) cantonal generada por el Banco Central de Costa Rica (BCCR) (BCCR, 2021a; Brenes Soto et al., 2021) en su versión más reciente –año 2017–, la cual permite aproximar el aporte de las AIC en la estructura productiva del país en dos niveles: nacional y cantonal. La matriz es una herramienta contable que registra los movimientos de producción entre cantones y actividades económicas –129 actividades económicas y 81 cantones–, para conformar una matriz con una dimensión de 10.449 filas y 10.499 columnas. Las estimaciones se basan en el valor de la producción, estimado mediante la submatriz de demanda final y la demanda intermedia.

Como parte del estudio se analizan las AIC relacionadas con áreas de Ciencia y Tecnología (CyT). Para delimitar estas actividades se utiliza una tercera fuente de información: el Manual de Clasificación de Ocupaciones de Costa Rica (COCR) (INEC, 2013b), basado en la Clasificación Internacional Uniforme de Ocupaciones (CIUO) de la Organización Internacional del Trabajo (OIT) en su octava versión (OIT, 2012). Con estas fuentes se realiza una clasificación de ocupaciones en las cuatro grandes áreas de CyT: Ciencias Exactas y Naturales; Ciencias Agrícolas, Ciencias Médicas, e Ingeniería y Tecnología. La categorización utilizada considera solamente ocupaciones de los grados de habilidad más altos (niveles 3 y 4), que comprende los niveles técnico y profesional. Para más detalle sobre esta clasificación véase el anexo 1.

Métodos

Para identificar las AIC en Costa Rica el análisis parte de la determinación de un umbral ajustado a las condiciones locales. Para tal efecto se aplican técnicas de clusterización. A partir de esos resultados, se estima la contribución de las AIC en el empleo y producción. Los procesamientos se llevan a cabo en el software y lenguaje de programación R (R Core Team, 2021).

Determinación del umbral para identificar AIC

Como un primer paso, a partir de datos de ENAHO se estima la cantidad de personas ocupadas por actividad económica para verificar los errores de muestreo y garantizar que los estimadores sean estadísticamente significativos. Para subsanar los casos con errores de muestreo altos, las actividades se agrupan en categorías. Como resultado de este proceso se identifican 114 actividades que cumplen con ese lineamiento (para más detalles ver los anexos 2 y 3).

Posteriormente, se estima el porcentaje de personas ocupadas con educación terciaria para las 114 actividades antes mencionadas; aquellas que superan el umbral de 33% establecido por el indicador IAIC-Eurostat se clasifican como AIC.

Para obtener una versión del indicador de AIC ajustado para Costa Rica (AIC-CR), se utiliza una de las técnicas más populares de aprendizaje no supervisado (Deshpande, & Kumar, 2018, p. 75;

Gan. et al., 2007, p. 161): el algoritmo de clusterización K-medias. Esta permite encontrar grupos que comparten características comunes cuando no se tienen categorías predefinidas (Wu, 2012, p. 2). En este caso particular, identifica grupos de actividades económicas con similitudes en cuanto a la proporción de personas ocupadas con educación terciaria. La identificación de grupos de valores altos en dicho indicador permite determinar un nuevo umbral ajustado a los datos locales.

Así, el objetivo de este método es encontrar una cantidad K de clústeres que no estén superpuestos, donde cada grupo esté representado por un centroide –que típicamente es la media del clúster—. En síntesis, según se describe en la literatura (Gan et al., 2007, p. 162; Thulin, 2021, p. 134; Wu, 2012, p. 7), el algoritmo funciona de la siguiente manera:

- En una primera fase, conocida como inicialización, se selecciona una cantidad k de centroides y el algoritmo asigna de manera aleatoria los casos en los k conglomerados.
- En una segunda fase, denominada como etapa iterativa, cada observación es asignada al punto focal o centroide más cercano mediante una función que computa la distancia entre la observación y el centroide, de manera que cada grupo de observaciones forma un clúster. El centroide de cada clúster es actualizado según los nuevos datos que le fueron asignados. Este proceso se repite (las observaciones se mueven entre conglomerados una a la vez según su distancia al centroide) hasta que ninguna observación cambie de clúster sin incrementar la distancia promedio entre las observaciones y los centroides (Gan et al., 2007, p. 162; Thulin, 2021, p. 134; Wu, 2012, p. 7).

En el fondo, este proceso iterativo funciona como un proceso de optimización (Wu, 2012, p. 8), en el que se busca minimizar la función objetivo (Gan et al., 2007, p. 161). Por este motivo, el método k-medias se conoce en la literatura como un modelo de clusterización basado en centroide (Deshpande, & Kumar, 2018, p. 74; Vermeulen, 2018, p. 636), pues las observaciones de datos con similitudes al centroide) se agrupan en un mismo clúster.

Según Wu (2012, p. 8), este método tiene las ventajas de que se trata de un algoritmo simple, robusto y altamente eficiente, además de ser aplicable a una amplia variedad de tipos de datos.

En línea con la metodología del IAIC-Eurostat, el algoritmo utiliza como unidad analítica las 114 actividades económicas y como atributo fundamental, el porcentaje de ocupados que cuenta con el grado de educación terciaria. De tal manera, este método permite identificar agrupaciones de valores altos o bajos de esa variable analizada, para así determinar un umbral ajustado a la distribución y realidad de los datos de Costa Rica según la penetración de la educación terciaria local y su participación en el empleo.

El análisis realizado contempla 3 etapas:

- Un proceso iterativo (10.000 repeticiones) para definir el número de conglomerados según el mínimo valor de inercia, es decir, se utiliza como criterio el punto a partir del cual no existe un cambio significativo en la inercia al adicionar un conglomerado en el análisis.
- Se ejecuta un segundo proceso iterativo (1.000 repeticiones) para elegir el algoritmo a utilizar. Según el criterio de maximización de la inercia inter-clases, se selecciona el algoritmo de Lloyd.
- Se realiza el análisis final de K-medias con el algoritmo seleccionado y el número de conglomerados obtenido en el primer paso.

De esta forma, el algoritmo identifica patrones dada la similitud entre observaciones (actividades económicas), según la distribución de los datos de proporción de ocupados con educación terciaria. Como resultado, se identifican cuatro conglomerados de actividades con

valores altos, medios-altos, medios-bajos y bajos (véase anexo 4). Para identificar las AIC según este método, se seleccionan los dos grupos de valores más altos, lo que equivale a un umbral de 27,2% de personas ocupadas con educación terciaria (este es el valor mínimo del conglomerado con valores medios-altos).

Para distinguir las AIC más cercanas a los sectores productivos se estimó la variante AIC-CR-Negocios que mantiene el umbral de AIC-CR, pero excluye Educación y Enseñanza. La tercera variante, AIC-CR-CyT distingue a las AIC relacionadas con las áreas científico-tecnológicas. Esas actividades se identifican con base en la clasificación realizada, como parte del presente estudio, a partir del COCR del INEC y el CIUO de OIT (ver Anexo 1). En este caso particular, los resultados del análisis de conglomerados k-medias evidencian distancias más marcadas entre los cuatro grupos identificados (valores altos, medios-altos, medios-bajos y bajos). Por esta razón, el punto de quiebre se define exclusivamente con el clúster de valores altos, que establece un umbral de 26,2% de personas con educación terciaria ocupadas en áreas de CyT. Nótese que el valor más alto en el grupo que le sigue (valores medios-altos) es considerablemente menor y apenas alcanza un 15,4% (véase el anexo 5).

En suma, luego de este proceso es posible distinguir las AIC según cuatro criterios:

- AIC-Eurostat: basado en el umbral de 33% de personas ocupadas con educación terciaria que utiliza Eurostat.
- AIC-CR: versión ajustada y basada en el umbral de 27,2% de personas ocupadas con educación terciaria que fue estimado para Costa Rica mediante el método de clusterización.
- AIC-CR-Negocios: mantiene el umbral de AIC-CR, pero excluye Educación y Enseñanza.
- AIC-CR-CyT: versión ajustada y basada en el umbral de 26,2% de personas ocupadas en áreas de CyT con educación terciaria que fue estimado para Costa Rica mediante el método de clusterización.

Análisis de empleo y producción económica en AIC

En esta fase se estima la producción económica según las distintas clasificaciones de AIC generadas para esta investigación. Además, se estudia el aporte de esas actividades en los grandes sectores económicos y se analiza la distribución de la producción generada por las AIC según cantón y su concentración en la Gran Área Metropolitana (GAM)⁷.

Una vez identificadas las AIC según los criterios establecidos, se lleva a cabo un análisis del empleo en esas actividades a partir de la ENAHO (INEC, 2022a). Este comprende la distribución de ocupados en AIC según: los cuatro umbrales definidos en la metodología, grandes sectores económicos (servicios, manufactura y primario) y c) sectores estratégicos para el país seleccionados por su participación en Cadenas Globales de Valor (CGV). Además, se estima la participación femenina en estas actividades.

Para analizar la producción económica de las AIC y su distribución en el territorio, se identifican las actividades que cumplen con los criterios definidos según la metodología propuesta en este trabajo y se estima su aporte a la producción nacional con datos de la MIP cantonal (BCCR, 2021a; Brenes Soto et al., 2021). Para esto, se realiza una correspondencia entre las actividades económicas utilizadas por el INEC según el CAECR y las analizadas en la MIP del BCCR (para más

La GAM comprende 31 cantones divididos en cuatro áreas metropolitanas: área metropolitana de San José (San José, Escazú, Desamparados, Aserrí, Goicoechea, Alajuelita, Vásquez de Coronado, Tibás, Moravia, Montes de Oca, Curridabat y las Zona de Control Especial de Mora y Santa Ana); área metropolitana de Alajuela (Alajuela, Poás y Atenas), área metropolitana de Cartago (Cartago, Paraíso, La Unión, Alvarado, Oreamuno y el Guarco); y área metropolitana de Heredia (Heredia, Barva, Santo Domingo, Santa Bárbara, San Rafael, San Isidro, Belén, Flores, San Pablo) (Guillén-Montero, 2021).

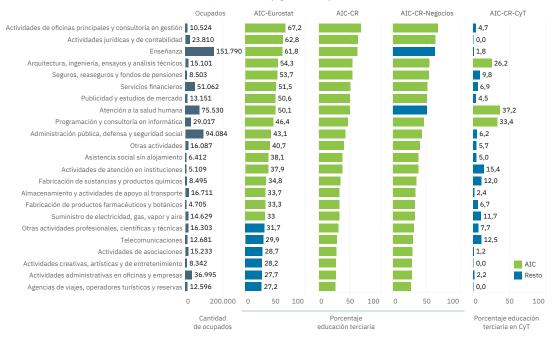
detalle véase el Anexo 6). Dado que las actividades del CAECR fueron analizadas a dos dígitos y las actividades de la MIP están desagregadas a tres dígitos, se asume que las actividades de la MIP son intensivas en conocimiento si pertenecen a una categoría que, a dos dígitos, es intensiva en conocimiento.

IV. RESULTADOS

Esta sección describe los resultados obtenidos al aplicar el indicador de AIC definido por Eurostat para delimitar estas actividades en el caso costarricense. Posteriormente, se identifican las AIC según un umbral ajustado con datos nacionales y se delimitan las más cercanas al sector empresarial. Luego, se analizan los resultados de aplicar una clasificación enfocada en las AIC en áreas científico-tecnológicas. Finalmente, se analiza el peso de las AIC en el empleo y la economía según estas clasificaciones.

Identificación de las AIC

El indicador de AIC definido por Eurostat permite analizar y comparar las economías en términos de su intensidad de conocimiento. Con base en la ENAHO (INEC, 2022a) diecisiete actividades económicas alcanzan el umbral AIC-Eurostat de 33% de ocupados con educación terciaria (gráfico 1). Entre las anteriores figuran tres de las diez actividades con mayor peso en el empleo a nivel nacional en 2022: enseñanza, administración pública y atención a la salud. Actividades de oficinas principales (67,2%), actividades jurídicas y de contabilidad (62,8%), enseñanza (61,8%) y actividades de arquitectura e ingeniería (54,3%) destacan por emplear a más personas con educación terciaria y en esa medida serían las más intensivas en conocimiento.


Al aplicar un umbral más ajustado a la realidad del país (AIC-CR), definido en 27,20%, seis actividades económicas adicionales (para un total de 23) alcanzan la categoría de intensivas en conocimiento. El análisis también distingue 21 actividades de carácter empresarial (AIC-CR-Negocios).

Finalmente, al considerar el umbral ajustado a la realidad del país en relación con la fuerza laboral en áreas de CyT (AIC-CR-CyT), definido en 26,20%, la cantidad de AIC se reduce de manera radical y solo tres alcanzan esta categoría: arquitectura e ingeniería, atención a la salud y programación informática. El hecho de que este indicador, calculado con base en el Manual de Clasificación de Ocupaciones de Costa Rica (COCR) para personas ocupadas en CyT es más estricto que los anteriores, así como la limitada sofisticación tecnológica de las actividades económicas del país, contribuyen a explicar el menor número de actividades que alcanzan la categoría de intensivas en conocimiento.

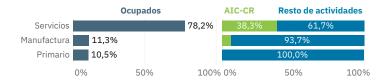
Empleo en AIC

En general, poco más de una cuarta parte de las personas ocupadas (26%) del mercado laboral en 2022 se vincula con AIC-Eurostat (gráfico 2), valor que se distancia del 36,1% que alcanzaron 28 países de la Unión Europea en el 2017 (Eurostat, 2022b). Entre otros factores, evidencia la disparidad entre Costa Rica con respecto a las economías de la Unión Europea en cuanto a las capacidades acumuladas de capital humano en la estructura del empleo, así como por encontrarse uno y otros en distintas etapas de modernización en sus actividades económicas. La participación local asciende al 31% al utilizar el umbral definido para AIC-CR. Llama la atención que al enfocarse en las actividades más relacionadas con las empresas (AIC-CR-Negocios), la proporción de las personas ocupadas disminuye en 11 puntos porcentuales (pp) y aún más en el caso de las personas ocupadas en AIC-CR-CyT que corresponden únicamente al 18% del empleo.

Gráfico 1 Cantidad de ocupados y porcentaje de profesionales con educación terciaria en AIC según umbral (absolutos y porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

Gráfico 2
Porcentaje de ocupados en AIC y resto de actividades según umbral (porcentajes)



Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

El empleo en AIC-CR se acentúa en el sector de servicios (38,3%) que es el principal empleador por cuanto agrupa al 78,23% de la ocupación nacional. En manufactura únicamente el 6,3% de las personas están ocupadas en AIC y ninguna actividad del sector primario califica como AIC (gráfico 3). La exigua injerencia de AIC en el sector agro contrasta con la relevancia del sector que en 2022 representó el 10% de la población ocupada, y que afronta un reto impostergable de modernizarse y aumentar significativamente su productividad, promoviendo entre otras

intervenciones, la I+D y la innovación. Trabajos anteriores habían alertado sobre retos para alcanzar mejoras en la productividad del sector debido a las limitaciones en el perfil del talento formado en esta área (Santos Pasamontes & Durán-Monge, 2022).

Gráfico 3
Porcentaje de ocupados a nivel nacional, en AIC-CR y resto de actividades según sector económico (porcentajes)

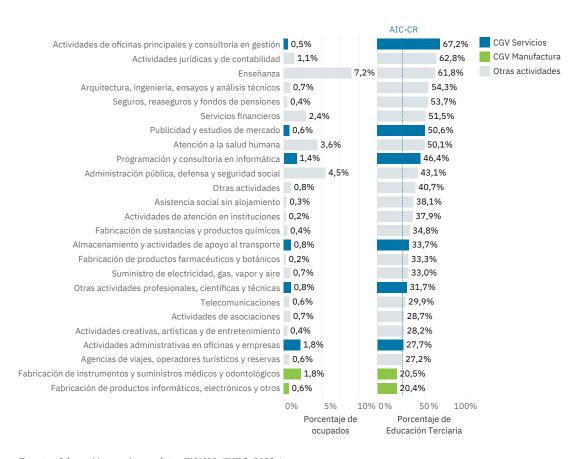
Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

AIC en sectores estratégicos seleccionados por su participación en Cadenas Globales de Valor (CGV)

Especial atención demandan ciertas actividades de importancia estratégica para el país por su aporte al valor agregado (VA) y su participación en CGV, como son servicios y manufactura (BCCR, 2021b; Meneses et al., 2021, pp. 1, 12, 13). Dada su participación en CGV, suponen una serie de potenciales beneficios para las actividades económicas involucradas, así como para el resto de la economía, como son la atracción de IED, mayor probabilidad de *catching up* en ámbitos de CTI, mejoras a nivel del capital humano, incentivos en la mejora continua de proceso de producción y mayores niveles de productividad (Godlewska-Dzioboń et al., 2019, p. 1; Meneses et al., 2021, p. 1). Según la MIP-2017, la estructura económica costarricense está compuesta por un total de 144 actividades económicas, de las cuales 23 forman parte de una CGV, catorce de manufactura y nueve de servicios (Meneses et al., 2021, p. 13).

Las actividades implicadas dentro de la CGV de servicios según la cuenta satélite del BCCR (BCCR, 2021b) son: actividades de oficinas principales y consultoría en gestión; programación y consultoría informática; actividades administrativas y de apoyo de oficina y otras actividades de apoyo a empresas; almacenamiento y actividades de apoyo al transporte; otras actividades profesionales, científicas y técnicas⁸; reparación de computadoras de uso personal y doméstico; y publicidad y estudios de mercado. De acuerdo con el gráfico 4, seis de las siete actividades implicadas en esta CGV –con la única excepción de reparación de computadoras, efectos personales y enseres domésticos– califican como AIC-CR.

Las actividades implicadas en TIC, programación informática y telecomunicaciones cuentan con un 46,4% y 29,9% de personas ocupadas con educación terciaria, respectivamente y en conjunto, representan el 2% de las personas empleadas a nivel nacional, aunque únicamente la primera participa en la CGV de servicios (gráfico 4).


En la CGV de manufactura participan: fabricación de productos textiles; fabricación de componentes y tableros electrónicos, computadoras y equipo periférico; fabricación de productos elaborados de metal excepto maquinaria y equipo; procesamiento y conservación de frutas y vegetales; fabricación de productos de plástico; fabricación de equipo eléctrico y de maquinaria

⁸ Incluye la actividad de investigación científica y desarrollo que fue agrupada bajo la categoría de otras actividades profesionales, científicas y técnicas con el objetivo de reducir los errores de muestreo y obtener estimaciones estadísticamente representativas.

ncp; fabricación de vidrio y productos de vidrio; procesamiento y conservación de pescados, crustáceos y moluscos; fabricación de metales comunes; fabricación de productos de electrónica y óptica; fabricación de productos de caucho; elaboración de comidas, platos preparados y otros productos alimenticios; elaboración de aceites y grasas de origen vegetal y animal y fabricación de instrumentos y suministros médicos y dentales. En contraste con la CGV de servicios, en esta, ninguna de las actividades califica como AIC-CR (gráfico 4).

Valga destacar que el 70,0% del VA producido por la CGV de manufactura está concentrado en una sola actividad económica: fabricación de instrumentos y suministros médicos y dentales (BCCR, 2021b, p. 28), responsable del principal bien de exportación. A pesar de tratarse de una industria catalogada como de alta tecnología (Zhu et al., 2011, p. 15), sorprende que únicamente 20,5% de las personas ocupadas cuentan con educación terciaria. Por otra parte, su participación en el empleo en 2022 fue de sólo 1,8% (gráfico 4).

Gráfico 4
Actividades de mayor participación en educación terciaria que forman parte de una CGV y su participación en el empleo a nivel nacional (absolutos y porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

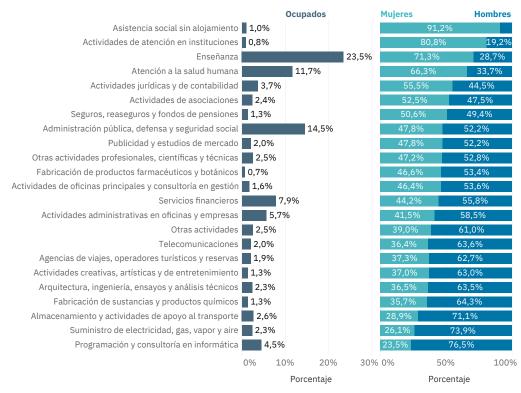
AIC según sexo

Esta sección examina el grado en que los logros educativos de hombres y mujeres son utilizados en las actividades que son intensivas en conocimiento. Las mujeres son quienes más participan en las AIC en general, hallazgo al que contribuye el hecho de que ellas superan a los hombres en la graduación terciaria (Pen, 2023, p. 327). En contraste con lo observado en el resto de las actividades económicas, superan a los hombres tanto según el umbral más alto de AIC-Eurostat, el ajustado a Costa Rica y en mayor proporción para el caso de las AIC-CR-CyT asociadas con las ocupaciones de CyT (gráfico 5).

Como las AIC cubren todos los sectores de la economía y las mujeres tienden a estar sobrerepresentadas en sectores como educación y salud, se considera el indicador AIC-CR-Negocios que se enfoca en el sector empresarial. Es en esta categoría donde la participación femenina es menor y representan el 43,4% de las personas ocupadas (gráfico 5) lo que sugiere mayores barreras de inserción para las mujeres en el sector privado.

Gráfico 5 Ocupados en AIC y resto de actividades según sexo y umbral (porcentajes)

	AIC		Resto de actividades	
	Mujeres	Hombres	Mujeres	Hombres
AIC-Eurostat	54,5%	45,5%	35,4%	64,6%
AIC-CR	52,6%	47,4%	34,9%	65,1%
AIC-CR-Negocios	43,4%	56,6%	39,6%	60,4%
AIC-CR-CyT	58,6%	41,4%	36,3%	63,7%


Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

Una mirada más detallada de las AIC-CR, muestra que las mujeres solo son mayoría en 7 de las 23 actividades que alcanzan este umbral. Cabe subrayar que la mayor disparidad se encuentra en una rama estratégica y de alta empleabilidad: programación e informática, donde los varones representan el 77% de las personas ocupadas (gráfico 6).

AIC según su participación en la producción

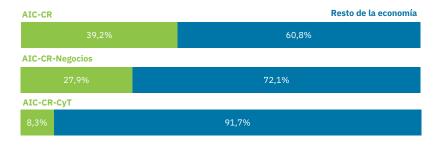

Este apartado analiza el aporte de las AIC a la producción nacional y cantonal a partir de la MIP cantonal del BCCR según datos correspondientes al año 2017 (Brenes Soto et al., 2021). El 60,8% de la producción económica del país no se relaciona con AIC-CR. Al excluir las ramas de salud y enseñanza (AIC-CR Negocios), el aporte de las AIC al aparato productivo es de solo un 27,9%. De manera análoga, la contribución de las AIC vinculadas con la CyT (AIC-CR-CyT) a la estructura económica es mínima (8,3%) y solo se relacionan con el sector servicios (gráficos 7 y 8).

Gráfico 6 Ocupados en AIC-CR según sexo (porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a).

Gráfico 7 Producción económica en AIC y resto de actividades según umbral. 2017 (porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

El aporte de las AIC-CR según sector económico reproduce la participación relativa de estos a la producción nacional. Con una considerable diferencia con respecto a los otros sectores, las AIC del sector servicios muestran la mayor contribución a la economía. Sobresale el impacto de las actividades de servicios en salud y enseñanza que en conjunto contribuyen un 11,4% de la producción nacional, así como los servicios financieros (banca central y consultoría en gestión

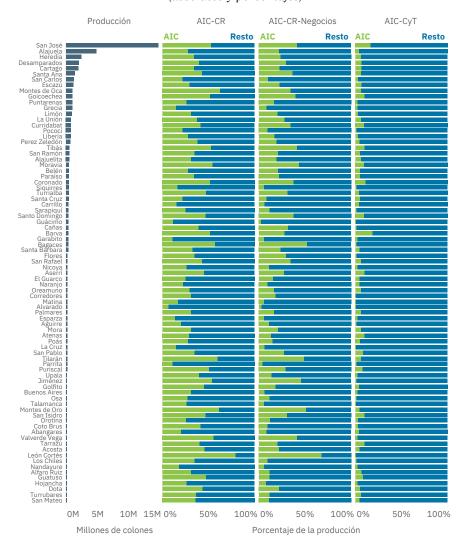
financiera que suman un 6%). La inherencia en el VA de las AIC en el tejido productivo asociado con la industria es mínimo (8,3%) y, como se indicó antes en relación con su contribución al empleo, también es nula la implicación de las AIC en el agro en términos de producción (gráfico 8).

Gráfico 8 Producción económica de AIC según grandes sectores económicos y umbral. 2017 (absolutos y porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

Entre las diez actividades que más contribuyen a la producción a nivel nacional y que califican como AIC-CR destacan actividades que tienen un importante aporte de inversión pública como enseñanza, atención a la salud y banca central. En adición a lo anterior, cabe subrayar la contribución de los servicios financieros y de TIC (gráfico 9).

Gráfico 9 Actividades de mayor contribución a la producción nacional según califiquen o no como AIC-CR. 2017 (porcentajes)



Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

El gráfico 10 agrega una visión detallada desde la perspectiva territorial, especificando la producción nacional al año 2017 y el aporte de las AIC por cantón y según los distintos umbrales estimados en el estudio. La escasa contribución generalizada de las AIC-CR-CyT a la producción total del país se mantiene sin grandes variaciones entre los cantones.

Debido fundamentalmente a la actividad de atención a la salud, Barva destaca por un mayor aporte de las AIC-CR-CyT (17,8%) a la producción, que supera incluso el de San José (9,8%). No obstante, al margen del contexto de CyT, las diferencias en la configuración económica entre cantones generan una mayor variación conforme se consideran las AIC-CR Negocios y AIC-CR. Al considerar AIC-CR, León Cortés muestra el valor más alto por la contribución de la actividad suministro de energía eléctrica, en contraste con el cantón Alvarado (7,4%).

Gráfico 10 Producción económica a nivel nacional por cantón y aporte de las AIC según umbral. 2017 (absolutos y porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

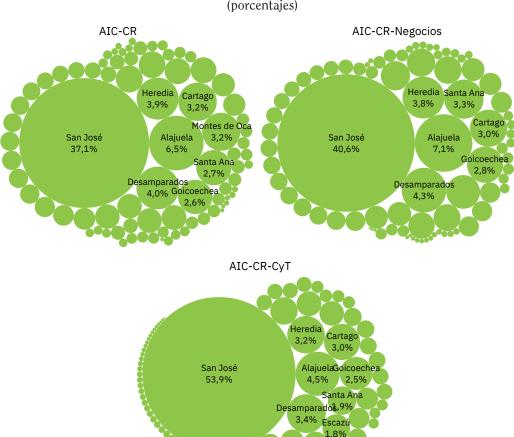


Gráfico 11 Producción económica de AIC según cantón y umbral. 2017 (porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

Estudios previos han identificado una alta concentración de la actividad económica del país en el cantón central de San José (27,4%) (PEN, 2021, p. 140). Según lo refleja el gráfico 11, la distribución de la producción en AIC reproduce ese patrón general, por cuanto el 37,1% de la producción relacionada con dichas actividades se concentra en ese mismo cantón. Esa dinámica se acentúa al considerar la contribución de las AIC-CR-CyT a la economía, en la que esta alcanza el 53,9%. Ese resultado no sorprende dada la mayor convergencia de estos profesionales en la zona, según lo demuestran la presencia de uno de los principales focos de profesionales con tales competencias (Durán-Monge, & Santos Pasamontes, 2020). La alta concentración y centralización (59,4%) de las instituciones de educación superior en la Región Central⁹ es un factor que contribuye a explicar los resultados (Román-Forastelli et al., 2022, p. 23).

Se encuentra una diferencia entre el peso de las AIC-CR en la producción de la GAM y el resto del país, así como la contribución relativa de las AIC-CR individualmente según la ubicación geográfica. Según se observa en el gráfico 12, fuera de la GAM la participación de las AIC –en

⁹ Seguida por una notable distancia por la Región Brunca y Chorotega (9,9% cada una), la Huetar Caribe (8,9%) y la Pacífico Central y Huetar Norte (5,5%, cada uno).

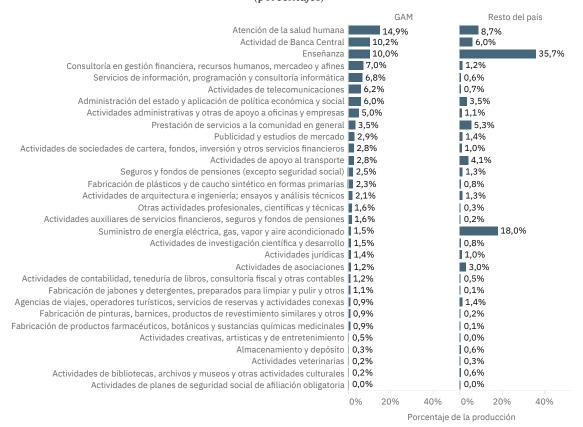

relación con el resto de las actividades— es menor; tendencia que se acentúa al excluir las actividades de Salud y Enseñanza (AIC-CR-Negocios).

Gráfico 12 Producción económica de AIC-CR en la GAM y resto del país. 2017 (absolutos y porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

Gráfico 13
Producción económica de AIC-CR en la GAM y resto del país según actividad económica. 2017
(porcentajes)

Fuente: elaboración propia con datos ENAHO (INEC, 2022a) y BCCR (2021a).

Al considerar las AIC-CR individualmente, en contraste con un aporte más homogéneo a la producción en la GAM, en el resto del país esa participación se encuentra altamente concentrada en suministro de energía (18,0% vs 1,5% en la GAM). Algo similar ocurre en enseñanza, cuya participación se amplifica fuera de la GAM. Entre las cinco AIC-CR con una mayor contribución a la producción fuera de la GAM en 2017, destacan enseñanza, suministro de energía, salud, banca central y servicios a la comunidad¹⁰ que conllevan una importante inversión pública, reflejando el alto impacto del aporte estatal en el sostén de las economías en ese contexto geográfico. En conjunto son responsables del 73,7% de la producción fuera de la GAM, mientras que dentro de la GAM su peso se reduce al 40,1% (gráfico 13)

V. DISCUSIÓN

Aporte de la medición de las AIC

La propuesta metodológica para ajustar un indicador que cumple con parámetros internacionales, que permitan la comparabilidad a las condiciones locales de cualquier país latinoamericano, constituye un aporte al conocimiento. En el caso de Costa Rica, contar con un indicador adaptado a la realidad nacional aporta un parámetro objetivo para identificar las AIC como aproximación para medir la base de conocimiento de su economía, y ampliar la comprensión sobre la estructura económica del país. Su monitoreo podrá ser de utilidad en el contexto académico, así como en la formulación de política pública para llevarle el pulso a los avances necesarios para alcanzar los altos niveles de competencias y conocimiento avanzado requeridos por un mercado de trabajo cambiante. Particularmente, para un país que precisa incorporar a más talento en AIC para lograr alcanzar una economía impulsada por procesos de alto contenido tecnológico en los sectores productivos y superar la trampa del ingreso medio.

Implicaciones de los resultados en el contexto nacional

El estudio encuentra una limitada penetración de las AIC en la estructura económica del país, según se evidencia desde distintas dimensiones: en lo referente a su participación en la producción, así como en el mercado laboral en general y en aquel asociado con el sector empresarial y con CyT.

Las AIC pueden repercutir en la productividad de los países en la medida en que una economía con alta penetración de AIC se espera que tenga una mayor productividad. En este sentido, la aplicación del indicador ajustado al contexto nacional aporta evidencia nueva que contribuye a comprender mejor los bajos niveles de productividad de la economía costarricense (Monge-González, 2020, p. 5), siendo que el estudio encuentra que el 60,8% de la producción en 2017 no ocurre en actividades intensivas en conocimiento (AIC-CR) y su peso disminuye consecutivamente al enfocarse en sectores clave para el desarrollo como el empresarial, donde la inherencia en el VA de las AIC es de solo el 8,3%. Una situación análoga se encuentra en el ámbito científico-tecnológico, que potencia la posibilidad de incorporar mayor sofisticación tecnológica e innovación en las actividades económicas.

Por otra parte, el estudio identifica una amplia brecha en la penetración de la AIC dentro y fuera del GAM. En el último escenario, esta depende en buena medida del aporte del sector público, con poca presencia privada. Este hallazgo contribuye a explicar las múltiples desigualdades territoriales de diversa naturaleza que afectan al país (Pen, 2024, p. 30) y llama a

¹⁰ Estas actividades incluyen: Relaciones exteriores, Actividades de defensa y de mantenimiento del orden público y seguridad (INEC, 2013a).

la urgencia de mejorar la oferta de educación superior sobre todo en áreas científico-tecnológicas, altamente concentrada en la región central (Román-Forastelli et al., 2022, p. 26), así como a la implementación de políticas de desarrollo productivo con perspectiva territorial que habiliten las condiciones para la promoción de la inversión privada y el empleo de calidad fuera de la GAM.

Adicionalmente, a pesar de que el desarrollo de la ciencia, la tecnología y la innovación es clave para el bienestar y sostenibilidad de una sociedad como la costarricense, carente de materias primas estratégicas y cuyo territorio tiene una extensión limitada, así como para la consecución de las apuestas de política pública del país, la participación de las AIC-CR-CyT en la economía es mínima. La dificultad que tiene el país de suplir los requerimientos de recurso humano de alto nivel formado en CyT a los sectores más dinámicos, aunado a una acotada demanda de ese tipo de profesionales por parte del resto del tejido productivo debido a su exigua sofisticación tecnológica, son condiciones que contribuyen a explicarlo.

Por otra parte, la modesta participación de las AIC en el empleo dentro de las CGV sobre las que gira la economía nacional no sustenta la creciente relevancia de esas CGV dado su alto potencial para la atracción de IED (Monge-González & Rivera, 2022, p. 79) y como dinamizador hacia niveles mayores de productividad en general (Wegrzyn, 2014, p. 6). Los hallazgos del estudio sugieren que las mejoras en la productividad que ha alcanzado el país desde 2016 explicadas principalmente por el aporte de las zonas francas y su participación en CGV (PEN, 2023b, p. 20) tienen un techo acotado si no se mejora sustancialmente el aporte de talento calificado. Estos resultados exigen medidas concretas para aumentar la formación de capital humano en las disciplinas que demandan estos sectores y entrenar a más personas y particularmente a más mujeres para aumentar su incorporación en las AIC de servicios. Esas medidas cobran especial urgencia en disciplinas y ocupaciones vinculadas con las TIC y otras requeridas por la industria de semiconductores en el marco de los retos y oportunidades que se abren para el país en virtud de los fondos derivados de la Ley CHIPS y Ciencia, "CHIPS ACT" (Umaña, 2023) para reconfigurar en el continente americano esa CGV. En esas disciplinas converge una alta demanda insatisfecha, así como las mayores brechas en detrimento de las mujeres (Durán-Monge et al., 2023, p. 22-25). Tal desafío deberá primero superar una serie de debilidades estructurales que afectan al país, como la que supone la escasa penetración de la educación superior (30,2%) (INEC, 2022b, p. 19).

En la CGV de manufactura, amerita especial atención la actividad de fabricación de instrumentos y suministros médicos y dentales, responsable del principal bien de exportación de contenido tecnológico. Esta actividad ha sido el blanco de una política explícita de desarrollo productivo desplegada durante los últimos veinte años y que, a partir de 2019, ha evolucionado en el desarrollo de una iniciativa bajo el enfoque de clúster, y más recientemente, hacia la visión más amplia de convertir a Costa Rica en un "Life-Centered Hub" o Centro de Ciencias de la Vida (Salazar-Xirinachs, 2022, p. 29). Sorprende que a pesar de dichos avances en materia de política pública y de los éxitos del sector, y del hecho de tratarse de una industria catalogada como de alta tecnología (Zhu et al., 2011, p.15), únicamente 20,5% de las personas ocupadas cuenta con educación terciaria, por lo que no alcanza siquiera el umbral para AIC-CR. Salazar-Xirinachs (2022, p. 41) alerta que ante la gradual pérdida de competitividad del segmento de dispositivos médicos de alto volumen, bajo valor unitario e intensivos en mano de obra –a lo cual contribuiría el proceso de automatización–, el país debe intensificar el ascenso, hacia productos "de mayor sofisticación tecnológica, menor volumen, mayor valor unitario y mayor insumo de conocimientos y mano de obra calificada".

En Costa Rica, similar a lo encontrado en 2017 en 28 países de la Unión Europea, las mujeres son quienes más participan en las AIC en general (Eurostat, 2022b). Contribuye a este hecho la mayor matrícula y graduación femenina a nivel terciario reportada en el país (PEN, 2023a, pp. 326–327), lo que sugiere que ellas puedan constituirse en la fuerza laboral que puede crecer con mayor dinamismo en los próximos años. No obstante, aprovechar esta ventaja estratégica implica

superar la segmentación por género del mercado laboral costarricense que presenta ocupaciones típicamente femeninas y masculinas, lo que evidencia importantes barreras de inserción para las mujeres, y que se agudizan en disciplinas tecnológicas de mayor empleabilidad (Durán-Monge, & Santos Pasamontes, 2024). Adicionalmente, las mujeres empleadas están menos representadas en AIC-CR-Negocios en comparación con los hombres, lo que sugiere que ellas afrontan mayores barreras potenciales de reclutamiento en el sector privado del mercado laboral. Hallazgos similares se han reportado en países europeos (European Commission, 2021, p. 70).

Agenda futura de investigación

La aplicación del indicador, que parte de un abordaje metodológico utilizado por la Unión Europea, podrá contribuir a aumentar el conocimiento de la realidad económica de los países de la región latinoamericana al medir sus avances y retrocesos comparado con naciones avanzadas en cuanto al peso de las AIC en la economía. Asimismo, por la relación entre AIC y productividad, el indicador contribuye a comprender factores que inciden en el bajo perfil de productividad de los países de la región. Futuros estudios que le lleven el pulso al ritmo en que los países logran transformarse en una economía basada en el conocimiento y por esa vía mejorar su competitividad, podrán contribuir al avance del conocimiento académico para el abordaje de la casuística regional.

Contar con un indicador ajustado a las condiciones locales permitirá también afinar el diagnóstico de los retos de la economía al monitorear incrementos en el peso de las AIC en la producción y el empleo en general, así como en determinadas ramas de valor estratégico o territorios y con una perspectiva sectorial y de género. La naturaleza del indicador le confiere la ventaja adicional de permitir analizar a la vez, el efecto de políticas educativas y productivas aportando al diagnóstico más integral de la realidad del país. Eventuales mejoras podrían reflejar procesos de *catching up* que estén ocurriendo mediante el desarrollo de actividades de mayor sofisticación y moviéndose de una manufactura más tradicional a una más intensiva en tecnología. Ello podría facilitar el seguimiento al urgente proceso de transformación de la estructura productiva de los países de la región que se traduzca en un aumento del crecimiento económico y social y del bienestar.

VI. REFERENCIAS

- Banco Central de Costa Rica. (2021a). *Matriz Insumo Producto Cantonal*. [Dataset]. https://www.bccr.fi.cr/indicadores-economicos/cuentas-nacionales-periodo-de-referencia-2017
- Banco Central de Costa Rica. (2021b). Costa Rica: Participación en cadenas globales de valor 2016-2017. https://www.bccr.fi.cr/indicadores-economicos/DocCuentaSateliteCGV/CR-Participacion-en-cadenas-globales-de-valor-2016-2017.pdf
- Brenes Soto, C., Campos Rodríguez, S., & Loaiza Marín, K. (2021). *Regionalización de la matriz insumo-producto costarricense* [Documento de trabajo N°1|2021]. https://www.bccr.fi.cr/investigaciones-economicas/DocIE/2021-DT-01.pdf
- CINDE. (2022). El Silicon Valley de Latinoamérica. https://www.cinde.org/es/sectores/servicios-intensivos-conocimiento/digital
- Deshpande, A., & Kumar, M. (2018). Artificial Intelligence for Big Data: Complete Guide to Automating Big Data Solutions Using Artificial Intelligence Techniques. Packt Publishing.
- Durán-Monge, E., & Santos Pasamontes, M. (2020). Capacidades profesionales para potenciar un desarrollo territorial más inclusivo en Costa Rica: análisis de conglomerados espaciales. *Revista de Ciencias Económicas*, 38(2). https://doi.org/10.15517/rce.v38i2.43571
- Durán-Monge, E., & Santos Pasamontes, M. (2024). Cierre de brechas de género en Ciencia y Tecnología en el mercado laboral: una oportunidad para avanzar hacia la equidad. https://estadonacion.or.cr/cierre-de-brechas-de-genero/
- Durán-Monge, E., Santos Pasamontes, M., Salas Gutiérrez, G., & Aragón Ramírez, A. (2023). *Brecha de género en Ciencia y Tecnología en Costa Rica* [Ponencia]. Consejo Nacional de Rectores; Programa Estado de la Nación. https://hdl.handle.net/20.500.12337/8531
- European Commission. (2008). *NACE Rev.2 Statistical classification of economic activities in the European Community*. Eurostat, European Commission. https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF.pdf/dd5443f5-b886-40e4-920d-9df03590ff91?t=1414781457000
- European Commission. (2021). *She figures 2021. Gender research and innovation statistics and indicators. Directorate-General for Research and Innovation* [Report 978-92]. https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/she-figures-2021_en
- Eurostat. (2020). *High-tech industry and knowledge-intensive services (htec)*. https://ec.europa.eu/eurostat/cache/metadata/en/htec_esms.htm#meta_update1678715541990
- Eurostat. (2022a). Eurostat indicators on High-tech industry and Knowledge-intensive services.

 Annex 8 Knowledge Intensive Activities by NACE Rev. 2. https://ec.europa.eu/eurostat/cache/metadata/Annexes/htec_esms_an_8.pdf
- Eurostat. (2022b). *Annual data on employment in knowledge-intensive activities at the national level* [Dataset]. https://ec.europa.eu/eurostat/databrowser/view/HTEC_KIA_EMP2__ custom 5900946/default/table?lang=en
- Gan, G., Ma, C., & Wu, J. (2007). *Data Clustering: Theory, Algorithms, and Applications*. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718348
- Godlewska-Dzioboń, B., Klimczyk, P., & Witoń, A. (2019). Knowledge-Intensive Services
 Development in the EU: Forecasts for Selected Countries and Implications for Poland.

 *Entrepreneurial Business and Economics Review, 7(2), 101–118. https://doi.org/10.15678/
 EBER.2019.070206
- Guillén-Montero, D., Vargas-Bogantes, J., Núñez-Román, O., & Vega-Ramírez, L. M. (2021). Situación de los Sistemas de Información Territorial para la gestión municipal: caso de la GAM, Costa Rica, 2018. *Revista Geográfica de América Central*, 66(1), 79–98. https://doi.org/10.15359/rgac.66-1.3

- HIPATIA. (2023a). *Panel Exportaciones*. Programa Estado de la Nación. https://hipatia.cr/dashboard/exportaciones-de-contenido-tecnologico
- HIPATIA. (2023b). *Panel Estadísticas de I+D en industrias farmacéutica y de dispositivos médicos*. Programa Estado de la Nación. https://hipatia.cr/dashboard/id-stat
- Instituto Nacional de Estadística y Censos. (2013a). Clasificación de actividades económicas de Costa Rica CAECR-2011. https://admin.inec.cr/sites/default/files/media/43_metodologia_rama_de_actividad_2011_2.pdf
- Instituto Nacional de Estadística y Censos. (2013b). *Clasificación de Ocupaciones de Costa Rica (COCR-2011)*. https://admin.inec.cr/sites/default/files/media/38_metodologia_ocupaciones_2011_2.pdf
- Instituto Nacional de Estadística y Censos. (2022a). *Encuesta Nacional de Hogares Julio 2022 Resultados Generales*. https://admin.inec.cr/sites/default/files/2022-10/reenaho2022.pdf
- Instituto Nacional de Estadística y Censos. (2022b). *Costa Rica en cifras en 2022*. Diciembre 2022. ISSN: 2215-5422. https://admin.inec.cr/sites/default/files/2022-12/recostaricaencifras2022.pdf
- Kuznetsov, Y., & Dahlman, C. J. (2008). *Mexico's Transition to a knowledge-based economy. Challenges and Opportunities.* The World Bank. https://doi.org/10.1596/978-0-8213-6921-0
- Meneses, K., Córdova, G, Oleas, K., & Jiménez-Fontana, P. (2021). *Perfil de las actividades productivas que son parte de cadenas globales de valor.* Consejo Nacional de Rectores; Programa Estado de la Nación. http://hdl.handle.net/20.500.12337/8224
- Ministerio de Ciencia, Innovación, Tecnología y Telecomunicaciones. (2021). *Plan Nacional de Ciencia, Tecnología e Innovación (PNCTI 2022-2027)*. https://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC¶m2=1&nValor 1=1&nValor2=96799&nValor3=129868&strTipM=TC&lResultado=7&nValor4=1&strSelect=sel
- Monge-González, R. (2020). Fortalecimiento del Sistema Nacional de Innovación de Costa Rica como elemento clave para la mejora de la productividad y el crecimiento económico.

 Academia de Centroamérica. https://www.academiaca.or.cr/download/fortalecimiento-delsistema-nacional-de-innovacion-de-costa-rica-como-elemento-clave-para-la-mejora-de-la-productividad-y-el-crecimiento-economico-informe-completo/
- Monge-González, R., & Rivera, L. (2022). Cadenas globales de valor, encadenamientos productivos y derrames de productividad en Costa Rica: Ciencias de la Vida y Servicios Corporativos de Alta Tecnología. Academia de Centroamérica. https://www.academiaca.or.cr/serie-vision-para-el-desarrollo/cadenas-globales-de-valor-encadenamientos-productivos-y-derrames-de-productividad-ciencias-de-la-vida-y-servicios-corporativos-de-alta-tecnologia/
- Muller, E., & Doloreux, D. (2009). What we should know about knowledge-intensive business services. *Technology in Society*, *31*(1), 64–72. https://doi.org/10.1016/j.techsoc.2008.10.001
- Niembro, A. (2020). Internacionalización e innovación en servicios intensivos en conocimiento en América Latina. *Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 15*(44), 95–123. https://ojs.revistacts.net/index.php/CTS/article/view/160
- Organización para la Cooperación y el Desarrollo Económico. (2006). *Innovation and knowledge-intensive service activities*. OECD Publishing, https://doi.org/10.1787/9789264022744-en
- Organización para la Cooperación y el Desarrollo Económico. (2011). *OECD Science, Technology and Industry Scoreboard 2011*. OECD Publishing, http://doi.org/10.1787/sti_scoreboard-2011-en
- Organización para la Cooperación y el Desarrollo Económico. (2023). *Estudios Económicos de la OCDE: Costa Rica 2023*. OECD Publishing. https://doi.org/10.1787/09d84187-es
- Organización Internacional del Trabajo. (2012). *International Standard Classification of Occupations: structure, group definitions and correspondence tables.* OIT
- Pejić Bach, M., Zoroja, J., & Miloloža, I. (2021). Employment in Knowledge-Intensive Activities in European Countries: Gender Perspective. *44th International Convention on Information*,

- Communication and Electronic Technology (MIPRO), 1409–1413. https://doi.org/10.23919/MIPRO52101.2021.9596746
- Programa Estado de la Nación. (2014). *Estado de Ciencia, la Tecnología y la Innovación*. https://hdl. handle.net/20.500.12337/7784
- Programa Estado de la Nación. (2021). *Informe Estado de la Nación*. https://hdl.handle.net/20.500.12337/8205
- Programa Estado de la Nación. (2023a). *Noveno Informe Estado de la Educación*. https://hdl.handle.net/20.500.12337/8544
- Programa Estado de la Nación. (2023b). *Informe Estado de la Nación. Resumen.* https://hdl.handle. net/20.500.12337/8602
- Poder Ejecutivo. (2020). *Declara de interés público y nacional a la industria médica y de bienestar y a Costa Rica como centro de bienestar, innovación y ciencias de la vida N° 42334* S-COMEX-MCSP, http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=91613&nValor3=121025&strTipM=TC
- Powell, W. W., & Snellman, K. (2004). The Knowledge Economy. *Annual Review of Sociology*, 30(1), 199–220. https://doi.org/10.1146/annurev.soc.29.010202.100037
- R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Román-Forastelli, M., Román, I., & Vargas-Cullell, J. (2022). Estudio especial sobre regionalización. Análisis de correspondencia de la oferta académica actual del Sistema de Educación Universitario Estatal para las necesidades de empleo y desarrollo territorial actuales y futuras de las regiones periféricas en Costa Rica. Consejo Nacional de Rectores; Programa Estado de la Nación.
- Salazar-Xirinachs, J. M. (2022). El sector/clúster de dispositivos médicos de Costa Rica. Estudio de caso. Banco Interamericano de Desarrollo [Nota técnica No. IDB-TN-02627]. https://doi.org/10.18235/0004634
- Santos Pasamontes, M., & Durán-Monge, E. (2022). *Más y mejor recurso humano para el agro*. https://hipatia.cr/aportes/mas-y-mejor-recurso-humano-para-el-agro
- Sevilla, P., & Dutra, G. (2016). La enseñanza y formación técnico profesional en América Latina y el Caribe. Una perspectiva hacia 2030. Oficina Regional de Educación para América Latina y el Caribe. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000260709
- Shi, X., Wu, Y., & Zhao, D. (2014). Knowledge intensive business services and their impact on innovation in China. *Service Business*, 8(4), 479–498. http://doi.org/10.1007/s11628-013-0202-1
- Simmie, J., & Strambach, S. (2006). The contribution of KIBS to innovation in cities: An evolutionary and institutional perspective. *Journal of Knowledge Management*, *10*(5), 26–40. https://doi.org/10.1108/13673270610691152
- Thulin, M. (2021). *Modern Statistics with R: From Wrangling and Exploring Data to Inference and Predictive Modelling*. Eos Chasma Press.
- Umaña, V. (20 de julio de 2023). Incentivos para la fabricación de semiconductores. *La Nación* https://web.archive.org/web/20240522200207/https://www.nacion.com/opinion/columnistas/incentivos-para-la-fabricacion-de-semiconductores/YLBJXKEDYVDO3BRCOLHOIUHFHU/story/
- Vermeulen, A. F. (2018). *Practical Data Science: A Guide to Building the Technology Stack for Turning Data Lakes Into Business Assets*. Apress. https://doi.org/10.1007/978-1-4842-3054-1
- Węgrzyn, G. (2014). Knowledge intensity and employment structures in the European countries. *Journal of International Studies*, 7(2), 96–105. https://doi.org/10.14254/2071-8330.2014/7-2/8
- Wu, J. (2012). *Advances in K-means clustering: a data mining thinking*. Springer. https://doi.org/10.1007/978-3-642-29807-3

- Zhou, C., & Wang, R. (2020). From invention to innovation: The role of knowledge-intensive business services in technology commercialisation. *Technology Analysis & Strategic Management*, 32(12), 1436–1448. https://doi.org/10.1080/09537325.2020.1774053
- Zhu, S., Yamano, N., & Cimper, A. (2011). *Compilation of Bilateral Trade Database by Industry and End-Use Category* (OECD Science, Technology and Industry Working Papers, 2011/06). OECD. https://doi.org/10.1787/5k9h6vx2z07f-en