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Abstract @

[Introduction]: Sea level rise in the east Caribbean has accelerated to 0.6 cm/yr due to the global effects of
accumulating greenhouse gases on the thermal expansion of seawater and terrestrial snow ice-melt. [Objective]:
This study quantifies the processes driving sea level rise, including changes in landscape and hydrology. Sea level
measurements are placed in context to facilitate regional guidance. [Methodology]: The research employs advanced
data assimilation and modelling to statistically analyze trends in both time and space, using the east Caribbean Sea
level as a metric. [Results]: The analysis suggests a 2050 sea level 40 cm above 1980 baseline, consistent with model
projections in 8.5 W/m? scenario. Inter-annual sea level variability and parabolic trends, driven by tropical ocean
warming and depleted snow cover, are prominent. An uptick of thermal expansion and runoff since 2010 is evident
from time-depth plots of global sea temperature and salinity anomalies. [Conclusions]: With beach erosion likely,
local adaptative measures are outlined that could be employed elsewhere.

Keywords: sea level rise; global context; east Caribbean inter-annual variability.

Resumen @

[Introduccion]: El aumento del nivel del mar en el Caribe oriental se ha acelerado a 0.6 cm/afio debido a los efectos
globales de la acumulacion de gases de efecto invernadero sobre la expansion térmica del agua de mar y el derre-
timiento de la nieve y el hielo terrestre. [Objetivo]: Este estudio cuantifica los procesos que impulsan el aumento
del nivel del mar, incluyendo los cambios en el paisaje y la hidrologia. Las mediciones del nivel del mar se con-
textualizan para facilitar orientaciones regionales. [Metodologia]: La investigacion utiliza técnicas avanzadas de
asimilacion de datos y modelado para analizar estadisticamente las tendencias en el tiempo y el espacio, tomando
como referencia el nivel del mar en el Caribe oriental. [Resultados]: El analisis sugiere que para 2050 el nivel del
mar estard 40 cm por encima del nivel de referencia de 1980, en concordancia con las proyecciones de modelos bajo
el escenario de 8.5 W/m?. La variabilidad interanual del nivel del mar y las tendencias parabdlicas, impulsadas por
el calentamiento del océano tropical y la reduccién de la cobertura de nieve, son notorias. Un aumento en la ex-
pansién térmica y el escurrimiento superficial desde 2010 es evidente en los graficos de profundidad-tiempo de las
anomalias globales de temperatura y salinidad del mar. [Conclusiones]: Dado que es probable que ocurra erosién
costera, se presentan medidas de adaptacion locales que podrian aplicarse en otras regiones.

Palabras clave: contexto global; elevacion del nivel del mar, variabilidad interanual en el Caribe este.
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1. Introduction

Coastal zones are becoming increasingly vulnerable to rising sea level (SL), a shared conse-
quence of radiatively forced global warming that leads to shoreline inundation (Hamlington et
al., 2011; Brown et al., 2013). The combination of transient storm surge and long term SL rise
from seawater expansion and terrestrial ice-melt, has over-topped sand dunes with harmful
consequences. As greenhouse gases accumulate from socio-economic activities, SL trends have
accelerated above 0.2 cm/year (Zhang et al., 2024). Regional variations occur because of the
underlying geology and ocean currents (Yin et al., 2009; Hu et al., 2011), and low-frequency
climate anomalies (Liu, 2012; Scafetta, 2013) such as the El Nifio-Southern Oscillation (ENSO)
that affect heat storage and runoff (Hamlington ef al., 2020; Cha ef al., 2021). Oceanic uptake of
surplus heat contributed to a ‘hiatus’ in the 2000s (England et al., 2014), followed by renewed
warming and SL rise.

Global greenhouse gas concentrations have been measured over many decades. Linear up-
ward trends have recently accelerated (Liu & Shi, 2023), indicative of compounding effects from:
(i) fossil fuel consumption (emissions ~ 30 Gt/yr), (ii) tropical forest loss (emissions and offset
~ 7 Gt/yr), (iii) snow and ice cover (albedo), (iv) rainfall intensification (runoft) and (v) ocean
stratification (currents). Recent parabolic trends may align with the IPCC ‘worst case scenario’
8.5 W/m? radiative surplus by 2100 (Fox-Kemper et al., 2021). Climate change penetrates to
local level in a variety of ways.

The eastern Caribbean is a bellweather of global change, located directly in the main path
of the ocean thermohaline conveyor belt. Its densely populated Antilles Islands rely on coastal
tourism and marine resources. Steady trade-winds entrain warm seawater into a westward Ca-
ribbean Current, that ultimately feeds the Yucatan Strait and Gulf Stream. Rising SL and storm
surges have led to a ~ 2 m/yr retreat of beaches there, consistent with global trends (Thieler et
al., 2007, Barrantes & Sandoval 2021; Winckler et al., 2023; Amrouni et al., 2024), that constrain
engineered and ecological services. In response, many governments have promulgated new set-
back lines for coastal development based on projected inundation (O.E., 2023). Here, the fol-
lowing scientific questions are addressed: (i) where and when are parabolic trends in SL and in-
ter-connected processes greatest, (ii) what are the key factors underlying parabolic trends from
global warming, (iii) what are the regional inter-annual influences on Caribbean SL rise, (iv)
are parabolic trends approaching the IPCC worst case scenario, and (v) what local adaptations
can be made to cope with accelerating environmental change, that could be applied elsewhere?

2. Methodology

SL is analyzed from five sources around Puerto Rico: NOAA tide-gauges at (i) 18.5°N,
66.1°W and (ii) 18.0°N, 67.0°W (PSMSL 2024) and gridded sea surface height in the area 17.0-
19.5°N, 68.0-64.0°W from (iii) multi-satellite altimeter (Copernicus Marine, 2023), (iv) global
ocean data assimilation (GODAS, Penny et al., 2015) and (v) Hadley3 coupled model outputs

-

A euna NACIONAL



https://doi.org/10.15359/rca.60-1.6
http://www.revistas.una.ac.cr/ambientales

(]
Revista de ——
Revista de Ciencias Ambientales (Trop J Environ Sci)

CIENCIAS AMBIENTALES <\zZ

. . . (Enero-Junio, 2026) . Vol 60(1): 1-14
Tropical Journal of Environmental Sciences DO https//doi.org/10.15359/rca 60-1.6

Open Access: www.revistas.una.ac.cr/ambientales
R. Jury, M.

(Andrews et al., 2020). The five monthly records are averaged to form a single time series 1980-
2023 and annual cycle percentiles are calculated. A low-pass 36-month polynomial filter is ap-
plied to the continuous monthly record to focus on accelerating SL rise and inter-annual vari-
ability. Parabolic trends are compared to Hadley3 projections in 8.5 W/m? scenario (Pascoe et
al., 2020). The Caribbean study area and Puerto Rico SL time series are presented in Figure 1;
Appendix 1 illustrates regional SL trends and upper ocean currents. Time-depth plots of global
averaged monthly 1-500 m sea temperature and salinity anomalies are analyzed from GODAS
1980-2023.

The filtered Puerto Rico SL time series is regressed onto 1980-2023 monthly fields of: (i)
1-100 m depth averaged sea temperature (Levitus et al. 2012); multi-satellite interpolated (ii) net
outgoing long-wave radiation (OLR, Lee ef al., 2007), (iii) vegetation color fraction (Pinzon &
Tucker 2014), (iv) tropospheric ozone (Van der A et al., 2015); and Merra2 reanalysis (Molod et
al., 2015; Gelaro et al., 2017) (v) sea level air pressure, (vi) 850 hPa zonal wind and (vii) 850 hPa
air temperature, (viii) terrestrial snow and ice depth, and (ix) long-wave absorption. The point-
to-field regressions 1980-2023 (N=528) reveal the pattern of parabolic trends and inter-annual
variability. The Merra2 product is preferred due to air chemistry and surface data assimilation,
while the Hadley model is preferred for SL analysis because of validated trends (Jury, 2018).

Projections to 2050 by the CMIP6 model ensemble (Eyring et al., 2015) in 8.5 W/m? sce-
nario are compared with observed extrapolated parabolic trends from global annual time series
of: (i) terrestrial snow and glacier mass, (ii) polar sea ice, (iii) carbon dioxide and (iv) methane
concentrations, and (v) maximum rainfall (from Merra2), and (vi) primary tropical forest cov-
er (Turubanova et al., 2018). Parabolic trends in all-time series are estimated by least squares
regression, where the R? fit accounts for explained variance. For annual interval with N=44, the
required threshold is R*> 0.21. Although SL measurements derive from Puerto Rico, most val-
ues reported here (for context) are representative of regional conditions.

It is necessary to motivate the choice of variables and model scenarios that underpin the
research here. Many choices are obvious: combining in-situ gauge, multi-satellite altimetry and
validated model outcomes to define sea surface height; and choosing scenarios (SSP8.5) that
best match the observed parabolic sea level rise since 1980. But others are less obvious: maxi-
mum precipitation and runoff in lieu of changes in terrestrial water storage, and tropospheric
ozone and vegetation fraction as indicators of secondary greenhouse gases and transpiration
tfeedback. These offer credible new insights on the parabolic nature of global climate change, in
addition to conventional variables such as terrestrial snow-ice depth and seawater temperature.
We can thus consider how these factors contribute to accelerating trends.
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3. Results

3.1 East Caribbean Sea level rise

The study area map and multi-satellite dynamic topography (Figure 1a) show the Antilles
Islands from Jamaica to Barbados surrounded by the Atlantic Ocean and Caribbean Sea. Puer-
to Rico is centrally located in the arc of islands that contain the east Caribbean Sea, but its SL
data are representative of regional conditions, in areas having a stable geological base. There is a
mean meridional SL gradient (0.76 m at 22°N / 0.36 m at 11°N) which draws seawater from the
salty Atlantic and Amazon-Orinoco Rivers (cf. Figure 1a). The main infiltration is ~ 0.5 m/s at
13°N, 61°W, forming part of the global thermohaline conveyor which feeds the Gulf Stream via
the Yucatan Strait. The annual cycle of east Caribbean SL rises and falls ~ 10 cm from September
to March (Figure 1b) following the sea surface temperature (~ 3C) and steric response of air
pressure (~ 5 hPa). Upper and lower SL percentiles identify inter-annual variability of similar
amplitude.

The monthly SL record and its filtered time series (Figure 1c) reflects seasonal and inter-an-
nual oscillations and an accelerating upward trend reaching ~ 0.6 cm/yr since 2010. The parabolic
trend covers 85.6% of observed SL variance and follows the Hadley3 projection in 8.5 W/m? ‘worst
case’ scenario > 1.0 cm/yr by 2050. The time-depth plot of global sea temperature anomalies (Fig-
ure 1d) illustrates values of -0.3 °C in the 1-500 m layer from 1985 to 1998, followed by anomalies
of +0.2 °C from 2003 to 2012. Since 2015 warm anomalies of +0.4 °C have deepened.
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Figure 1. (a) Sea surface height (contours) in the east Caribbean, place names and long-term tide gauges (dots)
within SL box; arrow represents inflow, ridge (dashed). (b) SL long-term annual cycle: 17 / 50 / 83 percentiles,
with SST annual cycle listed. (c) Monthly combined SL data (thin) filtered record (thick) used in regression maps
with parabolic trend (dashed), Hadley3 projected with 8.5 W/m? scenario (grey) and annual CMIP6 ‘worst case’
50 / 83 percentiles (yellow, red), adapted from IPCC (2021). (d) Hovmoller plot of global averaged GODAS sea
temperature anomalies with depth, warming since 2010.
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3.2 Point-to-field regression analysis

Field regression maps with respect to the filtered Caribbean SL time series are presented
in Figure 2 and highlight inter-annual and parabolic influences. For 1-100 m sea temperature
(Figure 2a) the regression pattern reflects warming of the east Pacific and west Indian Ocean,
consistent with global El Nifio. The surface air pressure regression map (Figure 2b) is low over
the southeast Pacific, and high over the south Atlantic, the Maritime Continent, and polar re-
gions. The 850 hPa air temperature regression map (Figure 2c) exhibits warming over the east
Pacific and Africa, while 850 hPa zonal winds (Figure 2d) reveal weakening of trade winds
across the west Pacific and global sub-tropics. Significantly, 1-100 m sea temperature field re-
gressions are positive in the tropics where the thermal expansion coefficient is ~ 3 10*/°C, about
double the global average (Roquet et al., 2022).

The multi-satellite net OLR regression map (Figure 2e) is indicative of global El Nifo, ex-
hibiting reduced cloudiness over the Maritime Continent and equatorial Atlantic, and increased
cloudiness over the central Pacific. Multi-satellite tropospheric ozone (Figure 2f) reflects wet
scavenging across the Pacific and west Atlantic along two equatorially symmetric axes, consis-
tent with standing Rossby wave patterns associated with El Nifio. Ozone concentrations show
upward trends in polar zones consistent with sinking motions induced by higher pressure. These
features are associated with inter-annual variability and parabolic trends in the filtered Carib-
bean SL record.
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3.3 Hydrological and terrestrial trends

Global variables associated with parabolic SL rise are featured in Figure 3 (a, b) via filtered
time series. Snow depth over land declined rapidly 1980-2005 then leveled off. Sea ice cover
crested in the 1990s (5.4%) then dropped since 2015 (4.8%) with a parabolic trend covering 82%
of variance. Global albedo declined from 14.8% in the 1980s to 14.5 % most recently, as noted
by Nikolov & Zeller (2024). In addition to landscape effects on global albedo, cloud fraction
declined 2 % while rainfall became more concentrated (Karlsson et al., 2023). Global runoff
was relatively steady (0.45 mm/day) in the period 1980-2000, then rose to 0.49 mm/day with a
parabolic trend covering 69% of variance. Enhanced runoff is expected from: (i) the poleward
spread of tropical convection (Lucas et al. 2014), (ii) intensified floods, (iii) highland ice-melt,
and (iv) land degradation (Miao et al., 2023; Zhou et al., 2023; Muller et al., 2024). This has led
to a 0.4 ppt decline of global salinity (Figure 3c) since 2005, with consequences for the merid-
ional overturning thermohaline circulation (Hu et al., 2011). A scatterplot comparing monthly
Caribbean SL and snow depth over land is presented in Figure 3d. We note two regimes: minor
SL rise above 3.2 m and major SL rise below 3.1 m of terrestrial snow depth. Its parabolic regres-
sion covers 30% of variance.

Point-to-field regression maps with respect to Caribbean SL (Figure 3 e, f) highlight north-
ern latitude responses. Snow depth has depleted across northern Canada, Alaska, Siberia, and
the Eurasia highlands from Alps to Himalayas. Minor gains are seen over the Tibet Plateau
and southern Canada 1980-2023. The veg-
etation color fraction exhibits ‘greening’
across the northern hemisphere except the
polar fringe. Naturally, photosynthesis is
stimulated by longer summers and higher
o e e e w0 e wmmn e om0 COZ2 concentrations. Note that point-to-

- — T field regression maps for southern lati-
tudes are omitted to due weak trends.
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Figure 4 compares CMIP6 ensemble projected trends with global observations extrapolat-
ed to 2050. For methane a 3™ order trend fits the 2000s hiatus, while for CO2 a 2™ order trend
suffices (Figure 4a). Greenhouse gas concentrations show a parabolic increase over the next 25
years that is slightly below the CMIP6 projection in 8.5 W/m? scenario. Snow and glacier mass

and (primary) tropical forest cover (Figure
4b) shows steady declines amid multi-year
fluctuations and nearly linear trends that
account for ~ 86% of variance. Extrapolat-
ed trends lie above the CMIP6 ensemble
projection for terrestrial ice melt, but near
the 0.05% per annum decline in tropical
forests due to farming and logging (Feng et
al., 2022). Global terrestrial rainfall mean
and maximum trends (Figure 4c) climb
upward with substantial fluctuations. In
contrast, the CMIP6 projection exhibits lit-
tle inter-annual variability due to ensemble
dispersion. The extrapolated trend for ob-
served rainfall fits a 3 order trend, again
reflecting the 2000s hiatus. Flood intensity
is projected to rise sharply after 2030 in the
8.5 W/m? scenario. The insulating effect
of rising greenhouse gases is evident from
long-wave absorption (Figure 4d) where-
in observed values have increased ~ 6 W/
m?. Parabolic trends extrapolate above the
CMIP6 projection and offer a warning of
future consequences for SL and associated
variables.

Figure 4. Global observed (symbol) and CMIP6
8.5 W/m? scenario (line) annual: (a) carbon dioxi-
de (blue) and methane (purple) concentrations. (b)
terrestrial snow and glacier mass anomalies (blue)
and tropical forest cover (green), (c) terrestrial
rainfall maximum (blue) and global mean (black),
and (d) surface absorbed long-wave flux. Observed
parabolic trends extrapolated to 2050 (dashed)
with R? listed.
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4. Conclusions

Global sea level rise has accelerated due to the inter-connectedness of oceans and accumu-
lating effects of atmospheric greenhouse gases, land degradation, warmer sea temperatures, ice
melt and runoft. The current rate of 0.6 cm/yr may reach 1.0 cm/yr by 2050, according to extrap-
olated observations and CMIP6 projections in 8.5 W/m? scenario. Apportioning SL rise, there
are multiple contributors (Farinotti et al., 2019; Daves, 2024): (i) seawater thermal expansion
(~ 37%), (ii) highland and polar ice-melt (~ 50%), (iii) tropical forest loss and (iv) intensified
runoff (~ 13%). We infer a compounding effect by global albedo, whereby lost snow cover yields
a growing radiation surplus rivaling that of greenhouse gases (Pistone ef al., 2014; Nikolov &
Zeller, 2024). The consequences for 2050 sea level is a height ~ 40 cm above 1980 baseline, con-
sistent with CMIP6 ensemble projections with a global surface air temperature increase of +3°C
(Hermans et al. 2021).

Among the drivers of inter-annual SL variability specific to the Caribbean record, we found:
(i) warming of the tropical Pacific, west Indian Ocean, and Africa, (ii) higher air pressure and
reduced snow depth in polar zones, (iii) weakened trade winds over the west Pacific, (iv) a
standing Rossby wave in cloud and ozone patterns, and (v) enhanced vegetation greenness from
shorter winters and CO2 uptake. The relaxation of trade-winds across the subtropics (Figure
2d) means that evaporative cooling has diminished as the Hadley Cell spreads poleward (Grise
& Davis 2020). Most of these factors saw an uptick in amplitude since 2010, consistent with
time-depth plots of sea temperature and salinity.

While most results suggest coastline regression, an increase of runoft (cf. Figure 3b) could
promote sedimentation near rivermouths (Barrantes & Sandoval 2021). Adaptative manage-
ment of eroding beaches (O.E., 2023) includes engineering works and sand replenishment to
sustain: (i) critical infrastructure, (ii) cultural icons, and (iii) recreational venues. If a ‘retreat’
from the coast is inevitable, then future development should be set-back above 3 m elevation
behind naturally vegetated dunes, capable of withstanding inundation by storm surge and ris-
ing SL. This will necessitate: (i) abandoning structures below the designated set-back, (ii) lo-
cal government reparation to private owners, (iii) restoration of beaches via soft engineering,
(iv) dedicated external funding, and (v) accounting oversight (cf. CRFG, 2019; DRNA, 2022;
US.gov, 2024). These actions will (i) lead to conflict (Yale, 2023) and require (ii) public aware-
ness campaigns and (iii) gradual implementation to accommodate alternatives. Diversifying to
renewable (hydro, solar, wind) energy will enable the Caribbean to join global mitigation efforts
and cut greenhouse gas emissions from current levels (~ 4 T yr''/person). Further research will
consider the compounding influences on SL rise, and the out-sized role of changes at the end of
record on parabolic trends. A final concern is that global mitigation efforts are being undone by
emissions from regional conflicts (Scientific American, 2024), keeping extrapolated parabolic
trends near the 8.5 W/m? scenario.
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8. Appendix

Appendix 1. Parabolic trend of multi-satellite dynamic topography 1993-2023 (cm/yr) and
mean 1-100 m ocean currents (vector, largest 0.7 cm/s), mapped across the eastern Caribbean.
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