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Abstract 

[Introduction]: Sea level rise in the east Caribbean has accelerated to 0.6 cm/yr due to the global effects of 
accumulating greenhouse gases on the thermal expansion of seawater and terrestrial snow ice-melt. [Objective]: 
This study quantifies the processes driving sea level rise, including changes in landscape and hydrology. Sea level 
measurements are placed in context to facilitate regional guidance. [Methodology]: The research employs advanced 
data assimilation and modelling to statistically analyze trends in both time and space, using the east Caribbean Sea 
level as a metric. [Results]: The analysis suggests a 2050 sea level 40 cm above 1980 baseline, consistent with model 
projections in 8.5 W/m2 scenario. Inter-annual sea level variability and parabolic trends, driven by tropical ocean 
warming and depleted snow cover, are prominent. An uptick of thermal expansion and runoff since 2010 is evident 
from time-depth plots of global sea temperature and salinity anomalies. [Conclusions]: With beach erosion likely, 
local adaptative measures are outlined that could be employed elsewhere.

Keywords: sea level rise; global context; east Caribbean inter-annual variability.

Resumen 

[Introducción]: El aumento del nivel del mar en el Caribe oriental se ha acelerado a 0.6 cm/año debido a los efectos 
globales de la acumulación de gases de efecto invernadero sobre la expansión térmica del agua de mar y el derre-
timiento de la nieve y el hielo terrestre. [Objetivo]: Este estudio cuantifica los procesos que impulsan el aumento 
del nivel del mar, incluyendo los cambios en el paisaje y la hidrología. Las mediciones del nivel del mar se con-
textualizan para facilitar orientaciones regionales. [Metodología]: La investigación utiliza técnicas avanzadas de 
asimilación de datos y modelado para analizar estadísticamente las tendencias en el tiempo y el espacio, tomando 
como referencia el nivel del mar en el Caribe oriental. [Resultados]: El análisis sugiere que para 2050 el nivel del 
mar estará 40 cm por encima del nivel de referencia de 1980, en concordancia con las proyecciones de modelos bajo 
el escenario de 8.5 W/m². La variabilidad interanual del nivel del mar y las tendencias parabólicas, impulsadas por 
el calentamiento del océano tropical y la reducción de la cobertura de nieve, son notorias. Un aumento en la ex-
pansión térmica y el escurrimiento superficial desde 2010 es evidente en los gráficos de profundidad-tiempo de las 
anomalías globales de temperatura y salinidad del mar. [Conclusiones]: Dado que es probable que ocurra erosión 
costera, se presentan medidas de adaptación locales que podrían aplicarse en otras regiones.

Palabras clave: contexto global; elevación del nivel del mar, variabilidad interanual en el Caribe este.
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1.	 Introduction

Coastal zones are becoming increasingly vulnerable to rising sea level (SL), a shared conse-
quence of radiatively forced global warming that leads to shoreline inundation (Hamlington et 
al., 2011; Brown et al., 2013). The combination of transient storm surge and long term SL rise 
from seawater expansion and terrestrial ice-melt, has over-topped sand dunes with harmful 
consequences. As greenhouse gases accumulate from socio-economic activities, SL trends have 
accelerated above 0.2 cm/year (Zhang et al., 2024). Regional variations occur because of the 
underlying geology and ocean currents (Yin et al., 2009; Hu et al., 2011), and low-frequency 
climate anomalies (Liu, 2012; Scafetta, 2013) such as the El Niño-Southern Oscillation (ENSO) 
that affect heat storage and runoff (Hamlington et al., 2020; Cha et al., 2021). Oceanic uptake of 
surplus heat contributed to a ‘hiatus’ in the 2000s (England et al., 2014), followed by renewed 
warming and SL rise. 

Global greenhouse gas concentrations have been measured over many decades. Linear up-
ward trends have recently accelerated (Liu & Shi, 2023), indicative of compounding effects from: 
(i) fossil fuel consumption (emissions ~ 30 Gt/yr), (ii) tropical forest loss (emissions and offset 
~ 7 Gt/yr), (iii) snow and ice cover (albedo), (iv) rainfall intensification (runoff) and (v) ocean 
stratification (currents). Recent parabolic trends may align with the IPCC ‘worst case scenario’ 
8.5 W/m2 radiative surplus by 2100 (Fox-Kemper et al., 2021). Climate change penetrates to 
local level in a variety of ways.

The eastern Caribbean is a bellweather of global change, located directly in the main path 
of the ocean thermohaline conveyor belt. Its densely populated Antilles Islands rely on coastal 
tourism and marine resources. Steady trade-winds entrain warm seawater into a westward Ca-
ribbean Current, that ultimately feeds the Yucatan Strait and Gulf Stream. Rising SL and storm 
surges have led to a ~ 2 m/yr retreat of beaches there, consistent with global trends (Thieler et 
al., 2007, Barrantes & Sandoval 2021; Winckler et al., 2023; Amrouni et al., 2024), that constrain 
engineered and ecological services. In response, many governments have promulgated new set-
back lines for coastal development based on projected inundation (O.E., 2023). Here, the fol-
lowing scientific questions are addressed: (i) where and when are parabolic trends in SL and in-
ter-connected processes greatest, (ii) what are the key factors underlying parabolic trends from 
global warming, (iii) what are the regional inter-annual influences on Caribbean SL rise, (iv) 
are parabolic trends approaching the IPCC worst case scenario, and (v) what local adaptations 
can be made to cope with accelerating environmental change, that could be applied elsewhere? 

2.	 Methodology

SL is analyzed from five sources around Puerto Rico: NOAA tide-gauges at (i) 18.5°N, 
66.1°W and (ii) 18.0°N, 67.0°W (PSMSL 2024) and gridded sea surface height in the area 17.0-
19.5°N, 68.0-64.0°W from (iii) multi-satellite altimeter (Copernicus Marine, 2023), (iv) global 
ocean data assimilation (GODAS, Penny et al., 2015) and (v) Hadley3 coupled model outputs 
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(Andrews et al., 2020). The five monthly records are averaged to form a single time series 1980-
2023 and annual cycle percentiles are calculated. A low-pass 36-month polynomial filter is ap-
plied to the continuous monthly record to focus on accelerating SL rise and inter-annual vari-
ability. Parabolic trends are compared to Hadley3 projections in 8.5 W/m2 scenario (Pascoe et 
al., 2020). The Caribbean study area and Puerto Rico SL time series are presented in Figure 1; 
Appendix 1 illustrates regional SL trends and upper ocean currents. Time-depth plots of global 
averaged monthly 1-500 m sea temperature and salinity anomalies are analyzed from GODAS 
1980-2023. 

The filtered Puerto Rico SL time series is regressed onto 1980-2023 monthly fields of: (i) 
1-100 m depth averaged sea temperature (Levitus et al. 2012); multi-satellite interpolated (ii) net 
outgoing long-wave radiation (OLR, Lee et al., 2007), (iii) vegetation color fraction (Pinzon & 
Tucker 2014), (iv) tropospheric ozone (Van der A et al., 2015); and Merra2 reanalysis (Molod et 
al., 2015; Gelaro et al., 2017) (v) sea level air pressure, (vi) 850 hPa zonal wind and (vii) 850 hPa 
air temperature, (viii) terrestrial snow and ice depth, and (ix) long-wave absorption. The point-
to-field regressions 1980-2023 (N=528) reveal the pattern of parabolic trends and inter-annual 
variability. The Merra2 product is preferred due to air chemistry and surface data assimilation, 
while the Hadley model is preferred for SL analysis because of validated trends (Jury, 2018).

Projections to 2050 by the CMIP6 model ensemble (Eyring et al., 2015) in 8.5 W/m2 sce-
nario are compared with observed extrapolated parabolic trends from global annual time series 
of: (i) terrestrial snow and glacier mass, (ii) polar sea ice, (iii) carbon dioxide and (iv) methane 
concentrations, and (v) maximum rainfall (from Merra2), and (vi) primary tropical forest cov-
er (Turubanova et al., 2018). Parabolic trends in all-time series are estimated by least squares 
regression, where the R2 fit accounts for explained variance. For annual interval with N=44, the 
required threshold is R2 > 0.21. Although SL measurements derive from Puerto Rico, most val-
ues reported here (for context) are representative of regional conditions.

It is necessary to motivate the choice of variables and model scenarios that underpin the 
research here. Many choices are obvious: combining in-situ gauge, multi-satellite altimetry and 
validated model outcomes to define sea surface height; and choosing scenarios (SSP8.5) that 
best match the observed parabolic sea level rise since 1980. But others are less obvious: maxi-
mum precipitation and runoff in lieu of changes in terrestrial water storage, and tropospheric 
ozone and vegetation fraction as indicators of secondary greenhouse gases and transpiration 
feedback. These offer credible new insights on the parabolic nature of global climate change, in 
addition to conventional variables such as terrestrial snow-ice depth and seawater temperature. 
We can thus consider how these factors contribute to accelerating trends.
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3.	 Results 

3.1	 East Caribbean Sea level rise
The study area map and multi-satellite dynamic topography (Figure 1a) show the Antilles 

Islands from Jamaica to Barbados surrounded by the Atlantic Ocean and Caribbean Sea. Puer-
to Rico is centrally located in the arc of islands that contain the east Caribbean Sea, but its SL 
data are representative of regional conditions, in areas having a stable geological base. There is a 
mean meridional SL gradient (0.76 m at 22°N / 0.36 m at 11°N) which draws seawater from the 
salty Atlantic and Amazon-Orinoco Rivers (cf. Figure 1a). The main infiltration is ~ 0.5 m/s at 
13°N, 61°W, forming part of the global thermohaline conveyor which feeds the Gulf Stream via 
the Yucatan Strait. The annual cycle of east Caribbean SL rises and falls ~ 10 cm from September 
to March (Figure 1b) following the sea surface temperature (~ 3C) and steric response of air 
pressure (~ 5 hPa). Upper and lower SL percentiles identify inter-annual variability of similar 
amplitude. 

The monthly SL record and its filtered time series (Figure 1c) reflects seasonal and inter-an-
nual oscillations and an accelerating upward trend reaching ~ 0.6 cm/yr since 2010. The parabolic 
trend covers 85.6% of observed SL variance and follows the Hadley3 projection in 8.5 W/m2 ‘worst 
case’ scenario > 1.0 cm/yr by 2050. The time-depth plot of global sea temperature anomalies (Fig-
ure 1d) illustrates values of –0.3 °C in the 1-500 m layer from 1985 to 1998, followed by anomalies 
of +0.2 ºC from 2003 to 2012. Since 2015 warm anomalies of +0.4 ºC have deepened. 

Figure 1. (a) Sea surface height (contours) in the east Caribbean, place names and long-term tide gauges (dots) 
within SL box; arrow represents inflow, ridge (dashed). (b) SL long-term annual cycle: 17 / 50 / 83 percentiles, 
with SST annual cycle listed. (c) Monthly combined SL data (thin) filtered record (thick) used in regression maps 
with parabolic trend (dashed), Hadley3 projected with 8.5 W/m2 scenario (grey) and annual CMIP6 ‘worst case’ 
50 / 83 percentiles (yellow, red), adapted from IPCC (2021). (d) Hovmoller plot of global averaged GODAS sea 
temperature anomalies with depth, warming since 2010. 
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3.2	 Point-to-field regression analysis
Field regression maps with respect to the filtered Caribbean SL time series are presented 

in Figure 2 and highlight inter-annual and parabolic influences. For 1-100 m sea temperature 
(Figure 2a) the regression pattern reflects warming of the east Pacific and west Indian Ocean, 
consistent with global El Niño. The surface air pressure regression map (Figure 2b) is low over 
the southeast Pacific, and high over the south Atlantic, the Maritime Continent, and polar re-
gions. The 850 hPa air temperature regression map (Figure 2c) exhibits warming over the east 
Pacific and Africa, while 850 hPa zonal winds (Figure 2d) reveal weakening of trade winds 
across the west Pacific and global sub-tropics. Significantly, 1-100 m sea temperature field re-
gressions are positive in the tropics where the thermal expansion coefficient is ~ 3 10-4 /°C, about 
double the global average (Roquet et al., 2022).

The multi-satellite net OLR regression map (Figure 2e) is indicative of global El Niño, ex-
hibiting reduced cloudiness over the Maritime Continent and equatorial Atlantic, and increased 
cloudiness over the central Pacific. Multi-satellite tropospheric ozone (Figure 2f) reflects wet 
scavenging across the Pacific and west Atlantic along two equatorially symmetric axes, consis-
tent with standing Rossby wave patterns associated with El Niño. Ozone concentrations show 
upward trends in polar zones consistent with sinking motions induced by higher pressure. These 
features are associated with inter-annual variability and parabolic trends in the filtered Carib-
bean SL record. 

Figure 2. Parabolic regression of 
Caribbean Sea level with fields of: 
(a) 0-100 m sea temperature, (b) 
Surface air pressure, (c) 850 hPa 
air temperature, (d) 850 hPa zonal 
wind, (e) net outgoing longwave 
radiation, (f) tropospheric ozone, 
wet scavenging (dashed). Field sig-
nificance exceeds 98% confidence, 
neutral zones unshaded, all values 
are per cm of SL rise.
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3.3	 Hydrological and terrestrial trends
Global variables associated with parabolic SL rise are featured in Figure 3 (a, b) via filtered 

time series. Snow depth over land declined rapidly 1980-2005 then leveled off. Sea ice cover 
crested in the 1990s (5.4%) then dropped since 2015 (4.8%) with a parabolic trend covering 82% 
of variance. Global albedo declined from 14.8% in the 1980s to 14.5 % most recently, as noted 
by Nikolov & Zeller (2024). In addition to landscape effects on global albedo, cloud fraction 
declined 2 % while rainfall became more concentrated (Karlsson et al., 2023). Global runoff 
was relatively steady (0.45 mm/day) in the period 1980-2000, then rose to 0.49 mm/day with a 
parabolic trend covering 69% of variance. Enhanced runoff is expected from: (i) the poleward 
spread of tropical convection (Lucas et al. 2014), (ii) intensified floods, (iii) highland ice-melt, 
and (iv) land degradation (Miao et al., 2023; Zhou et al., 2023; Muller et al., 2024). This has led 
to a 0.4 ppt decline of global salinity (Figure 3c) since 2005, with consequences for the merid-
ional overturning thermohaline circulation (Hu et al., 2011). A scatterplot comparing monthly 
Caribbean SL and snow depth over land is presented in Figure 3d. We note two regimes: minor 
SL rise above 3.2 m and major SL rise below 3.1 m of terrestrial snow depth. Its parabolic regres-
sion covers 30% of variance. 

Point-to-field regression maps with respect to Caribbean SL (Figure 3 e, f) highlight north-
ern latitude responses. Snow depth has depleted across northern Canada, Alaska, Siberia, and 
the Eurasia highlands from Alps to Himalayas. Minor gains are seen over the Tibet Plateau 

and southern Canada 1980-2023. The veg-
etation color fraction exhibits ‘greening’ 
across the northern hemisphere except the 
polar fringe. Naturally, photosynthesis is 
stimulated by longer summers and higher 
CO2 concentrations. Note that point-to-
field regression maps for southern lati-
tudes are omitted to due weak trends.

Figure 3. (a) Global monthly time series of snow 
depth over land and sea ice cover with parabolic 
trend, (b) global monthly time series of Merra2 
albedo and runoff with parabolic trend. (c) 
Hovmoller plot of global averaged GODAS sali-
nity anomalies with depth, freshening since 2005. 
(d) Scatterplot of monthly Caribbean Sea level 
vs. global snow depth over land, with parabolic 
fit. Parabolic regression of Caribbean Sea level 
time series onto: (e) snow depth over land, and 
(f) vegetation color fraction in northern latitudes, 
values per cm of SL rise.
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3.4	 Observed versus projected trends
Figure 4 compares CMIP6 ensemble projected trends with global observations extrapolat-

ed to 2050. For methane a 3rd order trend fits the 2000s hiatus, while for CO2 a 2nd order trend 
suffices (Figure 4a). Greenhouse gas concentrations show a parabolic increase over the next 25 
years that is slightly below the CMIP6 projection in 8.5 W/m2 scenario. Snow and glacier mass 
and (primary) tropical forest cover (Figure 
4b) shows steady declines amid multi-year 
fluctuations and nearly linear trends that 
account for ~ 86% of variance. Extrapolat-
ed trends lie above the CMIP6 ensemble 
projection for terrestrial ice melt, but near 
the 0.05% per annum decline in tropical 
forests due to farming and logging (Feng et 
al., 2022). Global terrestrial rainfall mean 
and maximum trends (Figure 4c) climb 
upward with substantial fluctuations. In 
contrast, the CMIP6 projection exhibits lit-
tle inter-annual variability due to ensemble 
dispersion. The extrapolated trend for ob-
served rainfall fits a 3rd order trend, again 
reflecting the 2000s hiatus. Flood intensity 
is projected to rise sharply after 2030 in the 
8.5 W/m2 scenario. The insulating effect 
of rising greenhouse gases is evident from 
long-wave absorption (Figure 4d) where-
in observed values have increased ~ 6 W/
m2. Parabolic trends extrapolate above the 
CMIP6 projection and offer a warning of 
future consequences for SL and associated 
variables.

Figure 4. Global observed (symbol) and CMIP6 
8.5 W/m2 scenario (line) annual: (a) carbon dioxi-
de (blue) and methane (purple) concentrations. (b) 
terrestrial snow and glacier mass anomalies (blue) 
and tropical forest cover (green), (c) terrestrial 
rainfall maximum (blue) and global mean (black), 
and (d) surface absorbed long-wave flux. Observed 
parabolic trends extrapolated to 2050 (dashed) 
with R2 listed.
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4.	 Conclusions

Global sea level rise has accelerated due to the inter-connectedness of oceans and accumu-
lating effects of atmospheric greenhouse gases, land degradation, warmer sea temperatures, ice 
melt and runoff. The current rate of 0.6 cm/yr may reach 1.0 cm/yr by 2050, according to extrap-
olated observations and CMIP6 projections in 8.5 W/m2 scenario. Apportioning SL rise, there 
are multiple contributors (Farinotti et al., 2019; Daves, 2024): (i) seawater thermal expansion 
(~ 37%), (ii) highland and polar ice-melt (~ 50%), (iii) tropical forest loss and (iv) intensified 
runoff (~ 13%). We infer a compounding effect by global albedo, whereby lost snow cover yields 
a growing radiation surplus rivaling that of greenhouse gases (Pistone et al., 2014; Nikolov & 
Zeller, 2024). The consequences for 2050 sea level is a height ~ 40 cm above 1980 baseline, con-
sistent with CMIP6 ensemble projections with a global surface air temperature increase of +3°C 
(Hermans et al. 2021).

Among the drivers of inter-annual SL variability specific to the Caribbean record, we found: 
(i) warming of the tropical Pacific, west Indian Ocean, and Africa, (ii) higher air pressure and 
reduced snow depth in polar zones, (iii) weakened trade winds over the west Pacific, (iv) a 
standing Rossby wave in cloud and ozone patterns, and (v) enhanced vegetation greenness from 
shorter winters and CO2 uptake. The relaxation of trade-winds across the subtropics (Figure 
2d) means that evaporative cooling has diminished as the Hadley Cell spreads poleward (Grise 
& Davis 2020). Most of these factors saw an uptick in amplitude since 2010, consistent with 
time-depth plots of sea temperature and salinity. 

While most results suggest coastline regression, an increase of runoff (cf. Figure 3b) could 
promote sedimentation near rivermouths (Barrantes & Sandoval 2021). Adaptative manage-
ment of eroding beaches (O.E., 2023) includes engineering works and sand replenishment to 
sustain: (i) critical infrastructure, (ii) cultural icons, and (iii) recreational venues. If a ‘retreat’ 
from the coast is inevitable, then future development should be set-back above 3 m elevation 
behind naturally vegetated dunes, capable of withstanding inundation by storm surge and ris-
ing SL. This will necessitate: (i) abandoning structures below the designated set-back, (ii) lo-
cal government reparation to private owners, (iii) restoration of beaches via soft engineering, 
(iv) dedicated external funding, and (v) accounting oversight (cf. CRFG, 2019; DRNA, 2022; 
US.gov, 2024). These actions will (i) lead to conflict (Yale, 2023) and require (ii) public aware-
ness campaigns and (iii) gradual implementation to accommodate alternatives. Diversifying to 
renewable (hydro, solar, wind) energy will enable the Caribbean to join global mitigation efforts 
and cut greenhouse gas emissions from current levels (~ 4 T yr-1/person). Further research will 
consider the compounding influences on SL rise, and the out-sized role of changes at the end of 
record on parabolic trends. A final concern is that global mitigation efforts are being undone by 
emissions from regional conflicts (Scientific American, 2024), keeping extrapolated parabolic 
trends near the 8.5 W/m2 scenario.
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8.	 Appendix

Appendix 1. Parabolic trend of multi-satellite dynamic topography 1993-2023 (cm/yr) and 
mean 1-100 m ocean currents (vector, largest 0.7 cm/s), mapped across the eastern Caribbean.
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