Kidney stones in children
(Renal lithiasis in children)

Gloriana Chacón-Retana, Sara Fernández-Rojas

Summary

Aim: Renal lithiasis is due to the precipitation of crystals due to an imbalance in the urine between promoting substances and inhibitory substances. It is a pathology with a prevalence between 2-10% in the pediatric population, with an incidence that has increased in the last 25 years; for this reason, this study aims to know the prevalence, clinical and metabolic manifestations of renal lithiasis in the pediatric population of the National Children’s Hospital of Costa Rica.

Methods: This is a retrospective, descriptive and observational study, through the review of records of patients under 18 years of age with the diagnosis of renal lithiasis, treated at the National Children’s Hospital, in the period from January 2000 to 2018.

Results: a total of 106 patients were included. The average age at diagnosis was 6.6 ± 3.8 years; the frequency of cases has increased 5.5 times in the last 5 years. Risk factors detected: urinary tract abnormalities 22.6% and family history of lithiasis 17.9%. Metabolic analysis showed low urine output in 74.3%, hyperphosphaturia in 45.2%, hypomagnesuria at 39.2%, and hypercalciuria at 37.8%. Etiologies determined: metabolic 54.7%, urinary tract malformations 16% and idiopathic in 30.9%. Intracorporeal lithotripsy was applied in 61.2%. Recurrence was observed in 28.5% of cases. The incidence of recurrence was related to the size of the lithotripsy (p = 0.001) and surgical treatment (p = 0.010).

Conclusion: there is an increase in the frequency of cases of pediatric lithiasis with a multifactorial etiology in the National Children’s Hospital of Costa Rica.

Keywords: nephrolithiasis, urinary tract, hypercalciuria, lithotripsy, metabolic.

Received date: 15 June 2020
Approved date: 11 February 2021
Renal lithiasis is due to the precipitation of crystals by an imbalance in the urine between promoting substances (calcium, oxalate) and inhibitory substances (citrate, phosphate, and magnesium), also involved changes in urinary pH and urine concentration associated with low fluid intake.1-3

A prevalence of between 2-10% is observed in the pediatric population, with an increasing incidence in the last 25 years.1-3,5 Inherited family history, structural deformities, urological surgeries, dehydration, and the use of certain drugs are some of the related risk factors.4-6

In 13% of pediatric patients, the diagnosis is accidental.1-4 The main causes described are metabolic abnormalities in urine, structural alterations of the urinary tract, urinary tract infections, or idiopathic etiology.3-4

Conservative management such as fluid therapy, analgesia, prophylactic antibiotic, and pharmacological treatment is recommended. Surgical treatment is indicated in cases of failure of spontaneous expulsion of the stone and/or if it obstructs the urinary tract, recurrent urinary tract infections, the presence of large stones; the surgical techniques used are ureteroscopy with or without laser extraction and extracorporeal shock wave lithotripsy.1-4

Recurrence rates are high, approximately 50% in the first 3 years and mostly in patients with metabolic abnormalities.4

Methods

This is a retrospective, descriptive and observational study. The information was obtained by reviewing the clinical records of the patients treated. All patients under 18 years of age with a diagnosis of renal or urinary tract lithiasis, treated at the National Children’s Hospital “Dr. Carlos Sáenz Herrera” (HNN), during the period from January 2000 to December 2018, were included. Patients with incomplete records (with less than 50% of the required information) were excluded.

The epidemiological variables to be analyzed were gender, age at diagnosis, origin, and year of diagnosis. The risk factors and comorbidities investigated were: nutritional status, family history of nephrolithiasis, urinary tract abnormalities, neurological disorders, dehydration, and drug use. The clinical manifestations presented in the first episode and the diagnostic methods used were described. The lithoid was also analyzed according to its size, composition, location, and number.

For 24h urine metabolic analysis, the definitions and values given in these references were considered.5-911

The study was approved by the Scientific Ethical Committee of the HNN with the code CEC-HNN-031-2018.

Table 1. Definitions of the 24-hour urine metabolic assay

<table>
<thead>
<tr>
<th>Findings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercalciuria</td>
<td>Calcium/creatinine ratio: < 12 months: > 0.8 mg/mg, 1-3 years: > 0.55 mg/mg, 3-5 years: > 0.4 mg/mg, 5-7 years: > 0.3 mg/mg, > 7 years: > 0.21 mg/mg Urinary excretion > 4 mg/kg bw at any age</td>
</tr>
<tr>
<td>Hyperoxaluria</td>
<td>Oxalate/creatinine ratio: 0-6 months: > 260-288 mg/mg, 7-24 months: > 110-139 mg/mg, 2-5 years: > 80 mg/mg, 5-14 years: > 60-65 mg/mg, ≥ 16 years: > 32 mg/mg Urinary excretion > 45 mg/1.73 m²/24 h at all ages</td>
</tr>
<tr>
<td>Cystinuria</td>
<td>Cystine/creatinine ratio: < 1 month: > 180 mg/mg, 1-6 months: > 112 mg/mg, > 6 months: > 58 mg/mg Urinary excretion: < 10 years: > 15 mg/1.73 m²/24 h, > 10 years: > 48 mg/1.73 m²/24 h</td>
</tr>
<tr>
<td>Hyperuricosuria:</td>
<td>Uric acid/creatinine ratio: < 1 year: > 2.2 mg/mg, 1-3 years: > 1.9 mg/mg, 3-5 years: > 1.5 mg/mg, 5-10 years: > 0.9 mg/mg, > 10 years: > 0.6 mg/mg Urinary excretion < 815 mg/1.73 m²/24 h in > 1 year</td>
</tr>
<tr>
<td>Hypomagnesuria</td>
<td>Magnesium/creatinine ratio > 2 years: < 0.12 mg/mg Urinary excretion < 88 mg/1.73 m²/24 h</td>
</tr>
<tr>
<td>Hypocitraturia</td>
<td>Citrate/creatinine ratio: 0-5 years: < 0.2-0.42 mg/mg, > 10 years: < 0.14-0.25 mg/mg Urinary excretion < 0.14 mg/1.73 m²/24 h at all ages</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>Urinary sodium excretion > 3 mEq/kg/24 h at all ages Fractional excretion of sodium > 1% Tubular reabsorption of phosphorus (TPR): it is calculated with the following formula, (1 urinary phosphorus x plasma creatinine x 100) / plasma phosphorus x urinary creatinine, its normal value is greater than 85-95%</td>
</tr>
<tr>
<td>Normal volume of diuresis</td>
<td>Infants 750 cc/24 h, < 5 years 1000 cc/24 h, 5-10 years 1500 cc/24 h, > 10 years over 2000 cc/24 h</td>
</tr>
</tbody>
</table>
The software used for data entry and analysis was StataCorp version 14.2, license serial number 4014040626265114.

Results

A total of 113 patients with the diagnosis of renal lithiasis were recruited, 106 were left for the study analysis. The average age at diagnosis was 6.6 ± 3.8 years (range: 0.3 - 14.6 years), 47.1% (n=50) were from an urban area.

The distribution of the frequency of lithiasis according to the year of presentation is shown in Figure 1.

General urine examination was normal in 31.1% (n=33), haematuria was observed in 21.6% (n=23), pyuria in 16% (n=17), crystalluria in 5.6% (n=6), of which 4 cases with calcium oxalate crystals, 1 with uric acid crystals and 1 with triple phosphate crystals.

In 27.9% (n=26) of patients, infection was detected on urine examination and an alkaline urinary pH was found in 65% (n=60).

The 24 h urine was performed in 72.5% (n=77) of the patients, 74.3% (n=57) presented a urine output lower than expected for age. The findings of the metabolic study (n=77) are described in figure 3.

The risk factors observed were: overweight or obesity in 18.5% (n=15), urinary tract abnormalities 22.6% (n=24), family history of urolithiasis 17.9% (n=19), previous urological surgeries 7.5% (n=8), neurological disorders, epilepsy and spina bifida were observed in 4.7% (n=5) each.

The main urinary tract abnormality detected was the double collecting system 46% (n=11), followed by vesicoureteral reflux and hydronephrosis in 25% (n=6) each. 80.2% (n=85) of the patients presented signs or symptoms, which are described in figure 2.

95.2% (n=101) were diagnosed by imaging study, of these 89.4% (n=90) by ultrasound and 3.3% (n=3) by abdominal X-ray and/or CT scan each.

A stone composition study was performed on 9.4% (n=10), of which 5 had a mixed composition stone, 3 with calcium oxalate, 1 with calcium...
phosphate, and 1 with magnesium ammonium phosphate. The most frequent size of the calculus was between 6-10 mm (39.6%) (n=42).

In 56.6% (n=60) the lithiassis was located at the pyelocaliceal level, 20.7% (n=22) in the distal ureter and 5.6% (n=6) in the bladder. In 56.6% (n=56) of the patients only one stone was found, 50.8% (n=50) from 2 to 5 stones and 13.1% (n=13) presented with multiple lithiassis.

Regarding the laterality of the lithiassis, it was observed that 82.8% (n=77) had a unilateral presentation, with a predominance of the right side in 55.8% (n=43). No statistically significant difference was found between one side concerning the other. (Z-value = 1.450, p-value = 0.147)

Among the causes of lithiassis, the following stand out: metabolic cause in 53.7% (n=57), urinary tract malformations in 15% (n=17), urinary tract infections, and previous surgeries in 1.8% (n=2) each and 30% (n=32) were of unknown etiology.

94.2% (n=100) required treatment; of these 57% (n=57) with surgical treatment for the extraction of the lithiass and 32% (n=32) expectant treatment; they received concomitant pharmacological and surgical treatment in 11.3% (n=11) and exclusive pharmacological therapy in 6.2% (n=6).

Intracorporeal lithotripsy was used in 61.2% (n=30), open pyelolithotomy 24.5% (n=12), pyeloplasty 14.3% (n=7) and cystolithotomy 6.1% (n=3).

Potassium citrate was administered in 9.1% (N=3); tamsulosin, hydrochlorothiazide, and sodium citrate were administered in 1 patient respectively.

The 28.5% (n=30) of the patients presented recurrence of lithiassis and it was determined that patients with stones between 11 to 15 mm have 4.5 times more risk of relapse. (Chi-square = 10.2154, p = 0.001). An association was also found between expectant management. (Chi-square = 5.4619, p = 0.019) and relapse, as well as with surgical treatment and relapse. (Chi-square = 6.6833, p = 0.010).

Discussion

The increase in the incidence of renal lithiassis in children is possibly due to increased diagnostic suspicion, changes in dietary habits, environmental and metabolic factors, as well as the use of more accessible imaging methods.7-8

Different investigations indicate that the female gender predominates, especially in preadolescents and adolescents (11-17 years) due to the lithogenic effect of estrogens, the hormonal effect on adipocytes, bone mineralization, and a higher sodium intake as well as a higher incidence of urinary tract infections (older than 14 years).9-12

On the other hand Yang and Vicedo Cabrera, report a higher incidence in favor of males with lower urinary output in areas of high temperatures.13-15

It is difficult to make the diagnosis of lithiassis in infants, due to a non-specific clinical picture, the average age at diagnosis ranges from 4.4 to 7.5 years; there is a clear predominance in the adolescent population (12-14 years) up to 68-72%.16-18

In the Latin American population, there are few studies on the frequency of this pathology, Ward and other authors report that 2.5% and 11% of their population were Latino or Hispanic respectively, this difference may be due to a dietary condition in the consumption of calcium, animal protein, sodium, oxalate, fluid intake, and environmental factors or an undetermined genetic component.19-20

However, the main risk factors found are still urinary tract abnormalities and a family history of hereditary lithiassis.21-22 Urinary tract abnormalities alonendonot develop lithiassis,they have to be associated with other factors such as urinary stasis, obstruction, urinary tract infections, urine supersaturation, pH alterations, and low urinary volume.10-11

Family history as a risk factor varies from one series to another (Issler 30%, Dwyer 40%, Velásquez 48-50%), some authors do not find a direct relationship with lithiassis, but they do relate it to environmental, social, and dietary factors of the family component.8,17,21,25,24

In pediatrics, clinical manifestations are very variable and unspecific, more so in young patients, due to the difficulty of localizing and describing symptoms or because they are asymptomatic.25-26

General urine examination may show hematuria, leukocyturia, nitrites, proteinuria, crystalluria, increased osmolarity, and alterations in urinary pH due to urinary tract infection or due to the inflammatory reaction produced by the lithioid
obesity is not related to the pathogenesis of lithiasis. Incidental diagnosis is reported in up to 13% of cases.

The main diagnostic method is still urinary tract ultrasound. However, some centers use computed axial tomography (CT) given the possibility of detecting smaller arthroscopies (3.7 mm), frequent in children under 1 year of age; the use of CT scan also be justified, as it has a sensitivity and specificity of almost 100%, in addition to providing useful anatomical information in surgical cases.

Urinary pH is important in the genesis, if pH < 6 is associated with uric acid, calcium oxalate, and cystine lithiasis, pH around 6.5 is associated with phosphate lithiasis, pH >7 with calcium phosphate lithiasis, pH >8 correlates with struvite and ammonium urate lithiasis.

A low urine output for age is one of the factors most associated with childhood lithiasis (52% to 89%), due to low fluid intake or as a result of a higher output of insensible losses (hot spots), which leads to an increase in the concentration of urinary solutes favoring crystallization.

In the pediatric population, the most frequent metabolic causes are hypercalciuria (50-62%), hypocitraturia (68%), hyperoxaluria (20-21%), cystinuria (7-22%), and hyperuricosuria (8%). Hypomagnesuria as a cause of lithiasis is reported in 11.3%-42%; magnesium is an inhibitor of calcium oxalate and calcium phosphate crystallization, so its decrease in urine is a lithogenic factor, observed in urine with pH>6.6.

Hyperphosphaturia is observed in 18.4% to 25% of children aged 0 to 5 years, more frequently in children under 12 months, due to a decrease in renal reabsorption of phosphate, increasing the synthesis of vitamin D and the absorption of phosphate and calcium at an intestinal level resulting in hypercalcemia. Hypercalcemia can be associated with distal renal tubular acidosis, tubular dysfunction (Dent or Lowe syndrome), hypervitaminosis D, chronic use of furosemide, dexamethasone, Bartter’s syndrome, William’s syndrome, and primary hyperparathyroidism.

Children show a metabolic profile different from that of adults; with a higher incidence of hypocitraturia and hypomagnesuria, no alterations in urine uric acid levels are found, suggesting that obesity is not related to the pathogenesis of lithiasis.

According to the location of the lithiasis, there is a higher incidence in the upper urinary tract (65-82%) at the level of the kidney and ureter, this is associated with the size of the lithiasis and the shape of the renal pelvis, which narrows as it passes through the renal hilum at the ureteropelvic junction. According to the number of lithiases reported per patient there is a higher frequency of single lithiasis (Vandervoot (69%), Edvardsson (53%), Sarkissian (80%), Issler 68%), several authors agree that genetic metabolic causes should be suspected in the presence of multiple lithiases.

Urinary tract malformations, both functional and anatomical, generate lithiasis due to urine stasis, preventing the elimination of crystals already formed, in addition to presenting a higher risk of infections. Urinary infections predispose to lithiasis due to the presence of urease-producing bacteria (Proteus, Morganella, Providencia spp, and Klebsiella), an enzyme that facilitates the formation of struvite or triple phosphate lithium by alkalization of urine. Bacteria also produce substances that form part of the matrix of the lithium, causing hypocitraturia and increasing calcium oxalate deposits.

The most commonly used treatment methods are lithotripsy and surgery by ureteroscopy. Extracorporeal lithotripsy is recommended in stones smaller than 2 cm located in the renal region, pyelocalyceal, and proximal ureter. As for pharmacological treatment, citrate is used in cases of hypercalciuria and hypocitraturia; it is an inhibitor of the crystallization of calcium salts and prevents recurrence. Thiazide-type diuretics (hydrochlorothiazide) are also used in hypercalciuria; they induce water and salt loss with reduction of extracellular volume, causing a compensatory mechanism, where calcium is reabsorbed and sodium is excreted, causing hypocalciuria. Tamsulosin is an alpha-adrenergic antagonist, indicated in children older than 5 years with ureteral and bladder stones that are symptomatic. Its mechanism of action is to dilate the distal ureter and promote passage of the stone (<10 mm).

Recurrence occurs in a high percentage (44%-47%), some authors report that asymptomatic patients have a lower risk of recurrence, and patients who require surgery in their first episode have a higher risk.
The variability of renal lithiasis in the pediatric population is notorious. For its prevention, fluid, magnesium, and citrate intake should be improved, as well as reducing sodium intake (<2300 mg/day), animal protein, and not exceeding calcium intake.

It is concluded that in our environment there is a clear increase in the incidence of cases of renal lithiasis in the pediatric population and often underdiagnosed because this pathology is not considered as a possibility in children. Unfortunately, there are no genetic studies to rule out a monogenic disease, but a multifactorial etiology is observed, where fluid intake plays an important role in the genesis, as well as variations in the diet of the child population.

References

7. Sas D, Becton L, Tutman J, Lindsay L, Wahlquist A. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis, Urolithiasis. 2016;44: 241-246

