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Resumen

Varias especies dentro del género Rickettsia son altamente patogénicas; por ejemplo R. 
rickettsii (el agente de la fiebre manchada de las Montañas Rocosas) y R. prowazekii (el agente del 
tifus epidemémico). Muchas de las rickettsiosis son prevalentes a lo largo de América Latina; sin 
embargo, estas enfermedades son desatendidas porque rara vez son consideradas en el diagnóstico 
diferencial de enfermedades febriles en los trópicos. Esto se explica parcialmente por el hecho de que 
todas las infecciones causadas por Rickettsia son difíciles de diagnosticar, debido a la presentación 
clínica no-específica inicial, sospecha clínica ausente, y la falta de pruebas diagnósticas sensibles y 
específicas que se pueden utilizar durante la presentación aguda. Además, la confusión diagnóstica 
con infecciones virales es la regla, y esto es un problema crítico ya que estas infecciones pueden 
tratarse con antibióticos apropiados. Con esta revisión, esperamos contribuir al conocimiento y la 
conciencia de estas importantes enfermedades dentro de los profesionales científicos y de salud en 
América Latina.
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Abstract

Several species within the genus Rickettsia are highly pathogenic; for example, R. rickettsii (the 
agent of Rocky Mountain spotted fever) and R. prowazekii (the agent of epidemic typhus). Many 
of the rickettsioses are prevalent throughout Latin America; however these diseases are neglected 
because they are seldom considered in the differential diagnosis of febrile diseases in the tropics. This 
is partly explained by the fact that all infections caused by Rickettsia are difficult to diagnose due to 
the initial non- specific clinical presentation, absent clinical suspicion, and the lack of sensitive and 
specific diagnostic tests that can be deployed during the acute presentation. Furthermore, diagnostic 
confusion with viral infections is the rule, and this is a critical problem because these infections 
can be treated with appropriate antibiotics. With this review, we expect to contribute to increase 
knowledge and awareness of these important diseases among scientists and health care professionals 
in Latin America.
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Rickettsia are the etiologic agents of two of 
the most lethal infections known to man, Rocky 
Mountain spotted fever (Rickettsia rickettsii) 
and epidemic typhus (R. prowazekii). Moreover, 
epidemic typhus has shaped History due to 
the massive epidemics that it produced during 
times of war until World War I.1 Both agents 
are select agents because of their potential use 
as bioweapons.2 On the other hand, several 

new pathogenic Rickettsia have been discovered 
in the last few decades; new rickettsioses are 
certainly emerging and old rickettsioses are re-
emerging.3

Members of the genus Rickettsia (family 
Rickettsiaceae, order Rickettsiales) are 
α-proteobacteria that share the following general 
characteristics: 1) they have closely related A/T-
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rich small genomes, a consequence of evolutionary loss of 
genes encoding proteins that participate in various biosynthetic 
pathways;4-6 2) they can only survive in the cytoplasm of 
eukaryotic cells where they obtain needed metabolic substrates 
that they cannot synthetize themselves (they are strict obligate 
intracellular parasites); 3) most of the well-known rickettsiae 
reside within arthropods. Indeed, hematophagous insects and 
ticks transmit rickettsiae that are pathogenic to humans and 
other vertebrates (they are zoonoses); 4) in humans, rickettsiae 
preferentially target endothelial cells, the cells that line vascular 
and lymphatic vessels (except for Rickettsia akari, the agent 
of rickettsialpox, which specially targets monocytes and 
macrophages).7

The transmission of rickettsia by hematophagous arthropod 
vectors was established early in the 20th century. In 1906 
WW King8 and HT Ricketts9 described their experiments with 
guinea pigs in which they demonstrated that ticks transmit 
Rocky Mountain spotted fever (RMSF). At the time, Ricketts 
and others recognized that the clinical presentation of Rocky 
Mountain spotted fever closely resembled that of epidemic 
typhus; however, it was not yet known that closely related 
organisms caused the two diseases. What was clear then was 
that the human body louse was the vector of typhus.10 Charles 
Nicolle received the 1928 Nobel Prize for this discovery.

In 1914, H. Plotz reported the identification of a gram-
positive bacillus in the blood of patients with typhus as well 
as their lice.11 H. da Rocha-Lima confirmed these findings in 
1916;12 he named the organism Rickettsia prowazekii in honor 
of Ricketts and Stanislaus von Prowazek, both of whom died of 
typhus acquired in the course of their investigations. In 1916, 
SB Wolbach studied samples from guinea pigs with Rocky 
Mountain spotted fever and identified very small gram-negative 
organisms in vascular vessels.13,14 Subsequently, in 1917, he 
confirmed this finding as well as the vascular nature of the 
infection in autopsies of human patients with Rocky Mountain 
spotted fever.15 The integration into a single genus, Rickettsia, 
would not be proposed until 1943.16 By the late 1960s and early 
1970s a more modern conception began to be synthetized.17,18

At the present moment, there are 22 entries for Rickettsia 
genomes in the database of NCBI. They are R. rickettsii, R. 
prowazekii,19 R. conorii,20 R. typhi, R. massiliae, R. canadensis, 
R. slovaca, R. bellii, R. africae, R. sibirica, R. peacockii, R. akari, 
R. felis, R. montanensis, R. rhipicephali, R. australis, R. parkeri, 
R. philipii, R. japonica, R. heilongjiangensis, Candidatus 
Rickettsia amblyommii, and Rickettsia endosymbiont of Ixodes 
scapularis. Based on the analysis of a subset of these data,21,22 
new phylogenetic relationships were proposed. Accordingly, 
there are four groups: 1) the non-pathogenic ancestral group 
(R. bellii and R. canadensis), which diverged earlier; 2) typhus 
group (R. typhi and R. prowazekii); 3) spotted fever group (R. 
rickettsii, R. parkeri, R. conorii, and several others); and 4) 
transitional group (R. akari, R. australis, and R. felis). A more 
recent analysis proposes to split the ancestral group in two with 
one Rickettsia in each group (i.e., R. bellii and R. canadensis) 
and to include the transitional group within the spotted fever 
group (SFG).23 According to this new scheme, the SFG group 
is divided in four subgropus: 1) the R. rickettsii subgroup (R. 

rickettsii, R. conorii, R. africae, R. parkeri, R. sibirica, R. slovaca, 
R. honei, R. japonica, R. heilongjiangensis, and a few others); 
2) R. massiliae subgroup (R. massiliae , R. montanensis, R. 
aeschlimannii and R. rhipicephali, R. raoultii and others); 3) 
R. helvetica subgroup (R. helvetica, R. asiatica, R. tamurae, R. 
monacensis); 4) R. akari subgroup (R. akari, R. australis, and R. 
felis). A phenotypic characteristic of the R. rickettsii subgroup 
is its susceptibility to rifampin, while the R. massiliae subgroup 
is resistant to this antibiotic.24 For a long time, the serological 
response was the main criterion used to classify rickettsiae in 
only two groups,25,26 spotted fever and typhus; using those 
criteria, R. canadensis was included in the typhus group at that 
time. Also, until 1995,27 Orientia tsutsugamushi, the etiologic 
agent of scrub typhus, was included in the genus Rickettsia 
(i.e., Rickettsia tsutsugamushi) and considered a third group.

In temperate regions of the globe, the seasonality of SFG 
rickettsioses is explained by the activity of the tick vectors, 
particularly the adults, which are more active during the spring 
and early summer. There is also a periodicity in a timeframe 
of decades that has not been appropriately explained yet. 
It is possible that climate change may affect the behavior of 
tick vectors.28 One of the recent peaks of reporting of Rocky 
Mountain spotted fever (RMSF) occurred during the early 
2000s.29 This may be related to increased disease activity but 
also to renewed interest not only in the United States but also 
throughout the Americas (RMSF occurs only in the Americas). 
The disease has now been documented in almost all countries 
of Latin America.30-40 Even more importantly, new SFG 
rickettsioses have been discovered. For instance, R. parkerii, 
which was considered a non-pathogenic Rickettsia for a very 
long time, was recently shown to produce a mild spotted fever 
with an eschar and local lymphadenopathy.41-44 Other recently 
described Rickettsia associated with eschars and relatively mild 
disease include Rickettsia 364D45 and R. massiliae.46,47

One of the consequences of the non-specific initial febrile 
syndrome and the lack of commercially available diagnostic 
methods that are sensitive and specific during the acute 
presentation of the rickettsioses is that the disease is frequently 
underreported and diagnosed as a viral illness.48 In Latin 
America, the umbrella diagnosis of dengue is frequently applied 
to cases of rickettsiosis.49

Pathogenesis

Rickettsioses are systemic febrile diseases that affect 
individuals of any age independently of their immune 
status.48,50-53 Although the pathogenetic mechanisms are shared, 
not all rickettsioses are equally severe, which is explained by 
differences in virulence of the individual species and vector-
related factors.

The entry of Rickettsia into host cells is an active process 
that requires energy from both the host and the rickettsiae.54 
There is evidence that rickettsiae use surface cell antigen 0 (sca0 
or rOmpA)55 and sca 156 to attach to target cells (these and the 
other rickettsial sca proteins are autotransporters). Subsequent 
to attachment, which is mostly a passive process, endocytosis 
of rickettsia is actively triggered when the rickettsial outer 
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membrane protein B (rOmpB or sca5) binds to the host cell 
membrane form of Ku70.57 Since blocking of this interaction 
only inhibits about 50% of rickettsial entry, other ligands and 
receptors must be present; sca258 and adr259 appear to be some 
of those bacterial ligands.

The necessary cytoskeletal rearrangements that produce 
the zipper-like entry mechanism of Rickettsia spp. involve 
multiple host pathways that activate the Arp2/3 complex60 
with the participation of Cdc42, cofilin, c-Cbl, clathrin, and 
caveolin 2.61 Rickettsia may also enter phagocytic cells such as 
monocytes and macrophages (which are a secondary target of 
most Rickettsia) by antibody-mediated opsonization.62 Within 
a short period of time after endocytosis, rickettsia escapes 
into the cytosol. The rickettsial genes pld, which encodes 
an enzyme with phospholipase D activity,63 and tlyc, which 
encodes a hemolysin64 are believed to be effectors of this 
function. This conclusion is based on the ability of the normally 
vacuolar Salmonella enterica to escape into the cytosol when 
it expresses rickettsial tlyc or pld.65 In addition, rickettsial 
proteins with phospholipase A activity were confirmed66, 67 but 
only in the typhus group Rickettsia. That activity underlies the 
phenomenon of hemolysis produced by these rickettsiae in 
vitro.68,69

Once Rickettsia escapes the phagocytic vacuole, it acquires 
multiple metabolic substrates from the host cytoplasm. The 
availability of those substrates allowed genome reduction 
through loss of many genes including, among many others, those 
for nucleotide synthesis and enzymes for sugar metabolism.70 
Multiple transporters of substrates from the host cytoplasm, 
including ATP,71 compensated for these gene losses.72 The 
mechanisms of transport are active and include the use of the 
transmembrane electrical potential.73

Typhus group Rickettsia grow until they burst the host cell74 
while spotted fever group Rickettsia rapidly spread from cell 
to cell75 due to their actin propulsion. Of course, host cells are 
damaged in the process;76 the mechanisms may involve the 
production of free radicals77,78 and phospholipase activity.79 
On the other hand, there is experimental evidence that 
rickettsiae can maintain their cellular niche through inhibition 
of apoptosis,80 and that pathogenic Rickettsia can inhibit 
autophagy.81

The main target cells of most Rickettsia, with the exception 
of R. akari are endothelial cells, the cells that line all vascular 
vessels in the body. These cells have important regulatory 
functions in angiogenesis, hemostasis, permeability and solute 
exchange, vascular tone, and inflammation.82-84 Thus, their 
targeting by rickettsiae explains many of the clinical features 
of the diseases including systemic involvement and leakage 
of intravascular fluid. Rickettsial infection of endothelial cells 
induces cellular damage leading to detachment. Those infected 
endothelial cells circulate in the blood85,86 and are likely to be 
the source of new foci of infection once they lodge in distal 
capillaries.

Several mechanisms are likely to contribute to the increased 
vascular permeability observed in clinical cases. They include 

production of vasoactive prostaglandins as a consequence of 
increased expression of COX-2,87 endothelial production of nitric 
oxide,88 effects of inflammatory cells and their mediators,89 and 
endothelial detachment and denudation of vessels. Such damage 
may be caused by phospholipase activity,79 mechanical damage 
to the membrane caused by exiting rickettsiae under actin 
propulsion,90 or lipid peroxidation of the cell membrane.76,77,91,92 
The most severe clinical presentations are a consequence 
of endothelial damage in the lungs and brain and include 
noncardiogenic pulmonary edema, interstitial pneumonia, adult 
respiratory distress syndrome, meningoencephalitis, seizures, and 
coma;93-97 involvement of these organs explains the majority of the 
mortality, which is observed particularly with Rocky Mountain 
spotted fever and epidemic typhus (the reported mortality 
without antibiotics ranges from 10 to 60%). However, it should 
be emphasized that reliance on serological methods for diagnostic 
confirmation may lead to underestimation the actual case-fatality 
rate. This was well illustrated in a recent report of nine fatal 
cases with negative serological results that were confirmed by 
immunohistochemical demonstration of the antigen in tissues.51 
At the other end of the clinical spectrum are several rickettsioses; 
murine typhus, with a mortality of less than 2%, is the most 
important of them because of its global distribution.98

Although multiple coagulation abnormalities have been 
described during the course of clinical and experimental 
rickettsiosis,99 disseminated intravascular coagulation occurs 
only rarely in lethal cases and is not a common feature of 
rickettsiosis.100

The cells that are infected immediately after inoculation 
have not been identified. Many of the rickettsiae that result in 
less severe disease also produce an eschar (area of necrosis with 
a rich inflammatory infiltrate and local rickettsial proliferation) 
at the bite site.101 When an eschar is present, another frequent 
clinical finding is local lymphadenitis, suggesting initial spread 
through lymphatics. Rocky Mountain spotted fever, the most 
severe of the spotted fever rickettsioses, does not manifest with 
an eschar or local lymphadenitis. This could be due to a more 
rapid hematogenous dissemination.

The recommended antibiotic treatment for all rickettsioses 
is doxycycline.102 This antibiotic has the advantage of covering 
other tick-borne bacterial infections. Rickettsiae are resistant to 
many antibiotics.103 Other antibiotics, including chloramphenicol 
and fluoroquinolones may be effective, although there is 
evidence that they may have deleterious effects.104,105 The 
antibiotic resistance of Rickettsia combined with the non-
specific initial clinical presentation and lack of commercially 
available laboratory tests for confirmatory diagnosis during the 
acute presentation, lead to delayed diagnosis and inappropriate 
treatment; the consequence is excessive mortality.104

Rickettsial virulence

Many rickettsial genes have been predicted to participate 
in virulence based on bioinformatics analyzes;72 several toxin-
antitoxin systems are examples. One of them, encoded by the 
vapB/C genes was shown to be functional; E. coli transformed 
with rickettsial vapC significantly decrease their growth, while 
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VapB formed a complex with VapC to inhibit its RNase activity.106 
More importantly, microinjection of VapC to mammalian cells 
induced apoptotic death.

A large number of intracellular bacteria use type IV secretion 
systems to inject proteins into the host in order to produce a 
favorable niche. Interestingly, genomic analysis showed that 
multiple genes with the potential to encode a reduced type IV 
secretion system are conserved in Rickettsia.107 Whether the 
system is actually functional or not remains to be tested.

The phospholipase D encoded by the gene pld, a likely 
mediator of phagosomal escape, is a virulence factor as 
suggested by the milder disease produced in guinea pigs 
infected with R. prowazekii with a mutated pld.108 This study 
used homologous recombination for targeted knockout of a 
rickettsial gene. Previous studies using the difficult techniques 
of genetic manipulation of Rickettsia, including transposon-
mediated mutagenesis, indicated that mutation of the open 
reading frames (ORFs) 243, 294, and 689 of R. prowazekii 
do not produce an observable phenotypic difference.109 Thus, 
these genes may be non-essential genes (at least for growth 
in mouse cell line in vitro). Also, R. rickettsii mutants lacking 
expression of sca2, which participates in actin polymerization, 
do not cause apparent illness in guinea pigs.110

Loss of regulation due to genome decay has also been 
proposed as a mechanism of increased virulence;111 however, this 
argument does not explain why R. rickettsii and R. prowazekii 
are almost equally pathogenic and the radical difference in 
virulence between the two typhus group rickettsiae, R typhi 
and R. prowazekii.

In the absence of genetic approaches that work well and 
consistently for Rickettsia, other methods have been introduced 
to identify virulence factors. One example is the comparison of the 
genomes of closely related Rickettsia with different pathogenicity. 
The Dermacentor andersoni endosymbiont R. peacockii was 
compared to virulent R. rickettsii; it was found that it had a 
plasmid, multiple transposons with intact transposase sequences, 
and many deletions, nonsense mutations, and split genes.112 The 
authors proposed that some of the absent or mutated genes in R. 
peacockii might explain the lack of pathogenicity. Those genes 
include DsbA (a catalyzer of disulfide bond formation), RickA, 
Sca0, Sca1, a gene encoding Protease II, and a gene encoding 
a putative phosphoethanolamine transferase that could play 
a role in the formation of the prominent slime layer found in 
the pathogenic spotted fever-group rickettsiae. Interestingly, 
the hypothetical protein A1G_05165 of a virulent strain of R. 
rickettsii (strain Sheila Smith) is deleted in R. peacockii and 
it is also not present in other non-pathogenic rickettsiae. This 
hypothetical protein has ankyrin repeats; similar proteins in other 
members of this order (i.e., Anaplasma) appear to play a role in 
virulence through binding of host DNA and altered host gene 
regulation. A1G_05165 is also mutated in a non-pathogenic 
strain of R. rickettsii (strain Iowa). In addition, the genomic 
study that compared the pathogenic strains R and Sheila Smith 
with strain Iowa also found 23 deletions within predicted ORFs 
of R. rickettsii Sheila Smith and 24 deletions within predicted 
ORFs of R. rickettsii Iowa.113 One of the genes deleted in R. 

rickettsii Iowa is the adhesin rOmpA (sca0). Also, rompB has 
four single nucleotide polymorphisms (SNPs) that may explain 
the defective processing of this important membrane protein 
in strain Iowa.114 Finally, it should be emphasized that there is 
a good opportunity to understand virulence by comparing the 
genomes, transcriptomes, and proteomes of the two typhus 
group Rickettsia since they have very closely related genomes 
but very different virulence in humans, with R. prowazekii 
producing a much more severe infection (epidemic typhus) than 
R. typhi (murine or endemic typhus).

Another system to study the physiology of Rickettsia in the 
absence of more efficient genetic systems is the use of E. coli-
based assays. For example, to identify proteins transported out 
of the rickettsial cytoplasm, bioinformatic tools were used to 
uncover predicted secreted proteins (based on the presence 
of N-terminal signal peptides). The signal peptides of those 
proteins from R. typhi were then fused to the E. coli alkaline 
phosphatase phoA gene (lacking an intrinsic signal peptide 
sequence) to test if those signal peptides provided information 
to translocate PhoA into the periplasm of E. coli.115 Eighty-four 
functional signal peptides were identified suggesting that those 
rickettsial proteins might be secreted using the rickettsial Sec 
system. Those proteins include sca1-3, sca5, Pld, and proteins 
that are believed to be part of a type IV secretion system.

Immunity and vaccines

An often overlooked but critical factor in the pathogenesis 
of rickettsial diseases is the transmission by arthropod vectors 
because their saliva is not a passive vehicle for transmission.116-118 
In fact, the tick saliva modifies the host environment in order to 
successfully complete the blood feeding, which occurs during 
extended periods (several days for nymph and adult ticks). 
Proteins in the tick saliva modulate host hemostasis, innate and 
adaptive immuntiy, complement activation,119 angiogenesis, 
and extracellular matrix regulation.120,121 Evidently, all of those 
factors could determine the final outcome of the infection. 
Furthermore, tick saliva can modulate the physiology of 
endothelial cells, the main target cells of Rickettsia. For 
example, salivary gland extracts from D. andersoni reduce 
the upregulation of ICAM-1 induced by TNF-α on a mouse 
endothelial cell line.122 This change could contribute to reduce 
the migration of leukocytes into tick bite sites.

Endothelial cells are not passive actors in the anti-rickettsial 
immune response. Upon rickettsial infection, the transcription 
factor NFκB (a critical stimulating factor of the immune system) 
becomes activated in endothelial cells.123-125Other critical 
signaling mediators become activated as well. They include 
STAT1, STAT3,126 and p38 MAPK.127-129 As a consequence of the 
activation of these various signaling systems, endothelial cells 
respond by expressing a variety of chemokines,130,131 cytokines 
such as IL-1 α, and IL-6,132,133 adhesion molecules such as 
E-selectin, VCAM-1, ICAM-1,134-136 and αVβ3 integrin,137 and 
secretion of prostanoids.87,138

NK cells are early producers of IFN-γ after infection with 
Rickettsia.139,140 This cytokine is important because, together 
with TNF-α, it activates the bactericidal functions of the 
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endothelium.141,142 Those functions are performed in part 
through expression of indoleamine-2,3-dioxygenase (IDO), 
which leads to tryptophan starvation.143 Animal studies have 
demonstrated the importance of a T helper 1 (Th1) response 
in effective immunity against rickettsiae144 with a particularly 
important role for CD8+ T cells.145,146 In fact, T cells are sufficient 
to mediate protection against a lethal rickettsial challenge, 
even in the context of a heterologous challenge where anti-
typhus group T cells protect against a lethal challenge with SFG 
Rickettsia and vice versa.147

Despite the fact that rickettsiae are intracellular parasites 
and that cellular adaptive immunity is critical during a primary 
infection, there is clear evidence that the humoral immune 
response is very important in preventing the development of 
disease during secondary infections or after a lethal challenge 
following passive serum transfer. In fact, it was Ricketts himself 
who demonstrated this fact.148 The anti-rickettsial humoral 
immune response is cross-reactive within rickettsiae of the 
same group but not across groups (e.g., between typhus and 
SFG groups).149,150 The most abundant surface protein of 
Rickettsia is rOmpB (Sca5), which is an autotransporter. It is 
an immunodominant protein and antibodies against it are 
protective.151

Inactivated vaccines for R. rickettsii and R. prowazekii 
were produced early from a variety of sources including their 
vectors but they were very reactogenic and protection was 
incomplete. Later on, inactivated vaccines were produced from 
Rickettsia cultivated in eggs but antigenicity was variable and 
protection was poor.152-155 In the 1950s a very effective vaccine 
for epidemic typhus was produced. It was an attenuated strain 
denominated Madrid E;156 however, spontaneous reversion 
to a virulent phenotype precluded further development and 
testing.157,158. We now know that the attenuation is explained, 
at least in part, by a point mutation in the gene encoding a 
S-adenosulmethionine-dependent methyltransferase.159 Given 
the nature of the mutation, it is not surprising that reversion 
was not an uncommon occurrence. Deletion of the entire gene 
would permit the production of a safer vaccine. Alternatively, 
strains with multiple genetic differences could prove to be safe 
vaccines. In this regard, it is interesting to note that the strain 
Iowa of R. rickettsii, which is attenuated and has multiple 
genetic differences when compared with virulent strains, 
can protect guinea pigs against a challenge with virulent R. 
rickettsii.113

Other recent efforts have focused on the production 
of a subunit vaccine. Fragments of rickettsial proteins that 
may trigger protective immunity were tested. They included 
rOmpA160,161 and rOmpB162-164 and results were encouraging; 
however, these approaches are limited and biased because of 
their focus on proteins that elicit a strong humoral response. 
A major effort for identification of immunogenic antigens is 
clearly needed, and the antigen discovery effort will need 
new tools to identify relevant conserved antigens recognized 
by T cells.

It will be possible to produce vaccines that cover more than 
one species of Rickettsia given the evidence of cross-protective 

immunity within the typhus or spotted fever groups165-171 or 
even across groups.147 The production of an effective anti-
Rickettsia vaccine is a public health priority for several reasons. 
Firstly, some rickettsioses are highly lethal not only to humans 
but also to companion animals (i.e., dogs). Secondly, clinical 
diagnosis of rickettsioses is very difficult due to the non-specific 
initial clinical presentation. Thirdly, there are no commercially 
available diagnostic tests that can be used during the acute 
stage when antibiotic intervention is helpful.

The contemporary development of a vaccine has two 
initial essential aspects, namely identification of the relevant 
antigens and definition of immunological correlates of 
protection to guide the selection of vehicles, vectors, schedules, 
and adjuvants. In the case of infections caused by Rickettsia, 
due to the availability of excellent murine models, relevant 
correlates of protective immunity can be derived from the 
characterization of experimental infections because animals 
(as well as humans) that survive the infection become solidly 
immune to reinfection.

In regard to immunological correlates of protection, the 
magnitude of a response assessed by a single parameter (e.g., 
IFN-γ for intracellular pathogens, as frequently reported), is not 
enough. Now we know that there is functional heterogeneity 
of the T cell effector responses (including cytokine secretion, 
cytolytic activity, and development of various memory 
phenotypes) and that there are particular subsets of T cells, 
which express unique combinations of effector functions, that 
are more protective.172-174 We probably should approach the 
definition of correlates of protective immunity in a way that 
parallels the complexity of physiological immunity, which is 
a multifaceted and integrated response that includes many 
different cells, receptors, ligands, and signaling modules that 
function in a combinatorial mode. For infections in which 
cellular immunity plays a predominant role, there is evidence 
from experimental models that multifunctional T cells are 
the best correlate of protection described thus far. More 
importantly, this has been demonstrated in humans as well.175-

177

The technologies for understanding the integrated 
functioning of the immune system are now available and 
accessible. Those are the tools of Systems Biology, the “omics” 
methods and bioinformatics tools that permit the analysis 
of complex interactions in biological systems through the 
investigation of massively parallel data acquired from each 
experimental condition.178 The application of Systems Biology 
to vaccinology is already identifying transcriptional signatures 
of protective immune responses that include sub-signatures 
of appropriate innate and adaptive responses.179 Moreover, 
early predictive signatures of appropriate adaptive immune 
responses immediately after vaccination have been defined and 
verified using the Yellow fever (17D) vaccine as a model.180 It 
is expected that such knowledge will provide paradigms for 
the development of novel vaccines for which limited data from 
humans is currently available. That is certainly the case for 
infections caused by Rickettsia because it is unlikely that we will 
be able to collect sufficient human samples from clinical cases 
with diverse outcomes in order to define broad signatures of 



53

IV Congreso latinoamericano de enfermedades rickettsiales. San José, 2013

protective immunity. A promising solution to this problem is to 
use our current understanding of well-known effective immune 
responses as guiding principles. The study of the response to 
two of the most successful human vaccines in history, the 
yellow fever vaccine177,181 and the smallpox vaccine,176 is likely 
to yield relevant paradigms that we could use as guiding posts 
in rickettsiology.

From the perspective of antigen identification for vaccine 
development, until recently it was almost exclusively biased 
towards the humoral immune response. This bias was partly 
due to the effectiveness of antibodies in protection against 
almost all of the currently approved vaccines for human 
use, the relative technical simplicity of working with serum 
and antibodies, and the methodical challenges of working 
with T-cells. Presently, the barriers to identify potent vaccine 
antigens recognized by T-cells need to be addressed because 
most of the vaccines that remain to be produced require a 
strong T-cell component to afford significant protection. In 
particular, there is an urgent need to develop appropriate 
techniques to identify antigens recognized by T-lymphocytes 
because antigen discovery is the most important aspect of any 
vaccine development project; without appropriate antigens, a 
vaccine is unlikely to succeed.

Given the evidence that CD4+T cells and CD8+T cells target 
different antigens,182 it is clear that antibody-based screening 
methods are not suitable to identify antigens recognized by 
CD4+T cells or, particularly, CD8+T cells. Several approaches to 
more directly identify antigens recognized by T-cells have been 
used; many of them rely on Reverse Vaccinology, a branch of 
Systems Biology that analyses entire microbial genomes to predict 
immunogenic proteins based on predefined rules derived from 
the analysis of large empirical datasets.183 On the other hand, the 
predicting power of those immunoinformatic strategies has not 
been thoroughly tested by direct experimentation. Moreover, at 
least for bacterial proteins, known protective antigens actually 
have less predicted epitopes than randomly selected bacterial 
protein sets used as a control.184

Empirical methods for identification of antigens recognized 
by T-lymphocytes rely on T-cells from animals or individuals 
that are immune to the pathogen. Those memory T-cells had 
been selected during the physiological immune response 
to persist and recognize a limited number of antigens (i.e., 
immunodominant antigens). Thus, methods that use memory 
T-cells for antigen identification are more likely to miss 
potentially protective subdominant antigens. One strategy 
for T-cell antigen identification that is not biased towards 
immunodominant antigens is genomic immunization or 
Expression Library Immunization (ELI).185 In this technique, 
pools of eukaryotic expression vectors with cloned pathogen 
genes are used to directly immunize animals. The animals are 
then challenged with lethal doses of the microbial pathogen. 
The gene pools that trigger protection are subsequently 
deconvoluted by testing each component of the pool one at 
a time. This method allows the priming of naïve T-cells by the 
expressed cloned microbial genes regardless of whether they 
are subdominant or dominant during a natural infection as long 
as the appropriate T-cell receptors are present. Although ELI has 

been successfully used,186 it has its own problems as it relies on 
a DNA immunization strategy; thus, antigen expression is not 
guaranteed in all cases. Accordingly, it is not possible to know 
which pathogen genes were not screened validly; a negative 
response can be due to lack of an immunological response or to 
failed expression of the microbial gene.

As an alternative, we produced a new in vivo screening 
platform; the idea is to easily produce antigen presenting cells 
(APCs) expressing individual open reading frames (ORFs) from 
any sequenced Rickettsia and use them for immunization of 
naive mice. Immunization with pooled APCs containing 4 to 
5 rickettsial ORFs is followed by challenge with live virulent 
pathogen and measurement of an indicator of protection such 
as decreased bacterial load. Once protective pools are identified, 
each member of the pool is tested individually to identify 
ORF(s) responsible for a protective immune response. With 
this platform, one can easily test for cross-protective responses 
by immunizing with the ORFs of one species of Rickettsia 
and challenging with another. Importantly, the proposed 
methodology is not biased by immunodominance because T 
cells from immune animals are not used to select antigens. 
This aspect is potentially important for vaccine development 
because subdominant or cryptic antigens have been shown 
to elicit protective immune responses in other systems.187-189 
The ability of our platform to discover relevant antigens for 
vaccine development independently of their ranking in the 
natural hierarchy of immunodominance dramatically expands 
the universe of possible antigens; thus, this platform offers a 
possible solution to the identification of protective antigens 
that are conserved among different strains of a microbe or even 
different species within a genus.
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