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Abstract

Assuming that the germination process of a seed passes through sev-
eral stages (or states), including a state of non-germination, we model this
phenomenon by means of a continuous-time Markov chain. The distri-
bution of the germination time and the average of the first germination is
obtained. In particular, when the duration of the process at each stage is on
average the same we see that the proposed model adjusts rather well some
experimental data.

Keywords: seed germination; first germination time; continuous-time Markov
chains.

Resumen

Asumiendo que el proceso de germinación de una semilla pasa por
varias etapas (o estados), incluyendo un estado de no germinación, se
modela éste fenómeno por medio de una cadena de Markov a tiempo con-
tinuo. Se obtienen la distribución del tiempo de germinación y la media
del tiempo de la primera germinación. En particular, cuando la duración
del proceso de germinación es en promedio el mismo en cada etapa vemos
que el modelo propuesto se ajusta bastante bien a datos experimentales.

Palabras clave: germinación de semillas; tiempo de la primera germinación;
cadenas de Markov a tiempo continuo.
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1 Introduction

The development of plants has several stages, in this work we will study the
first one, namely the germination stage. We are going to focus on the time of
germination. More concretely, we will model the percentage of germination.
Such model can be applied to predict germination rates and such information can
be used to take different decisions, for example in the distribution of transplant
time of the seedlings.

There are different ways to model the germination time (see [2, 4, 5, 6] and
the references therein). Some of them are based on predictive equations and
they are reasonably accurate over a defined range [3]. On the other hand, the
cumulative percentage of germination time of experimental data suggests an S-
shape germination curve and there are many attempts to fit such curve to the data
[10]. Among the classic models, with S-shape, are those that use the Logistic [9,
13] or Richards function [1]. Since the data are stochastic, different experiment
yields different points, this is why we believe that a stochastic approach is more
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helpful than a deterministic one. Based on this, in this paper, we propose a
stochastic model for seed germination.

Germination is a biological process that is affected by various environmental
as well as genetic factors. We will assume that such a complex biological process
will be carried out in several stages beginning with water uptake by the seed
and culminating in the emergence of the embryo from the seed coat (radical or
hypocotyl emergence), see [6]. Our contribution here is that we will use the
theory of pure jump Markov chains to model the germination process. Each
stage of the germination process will be a state of the stochastic process, the
state when there is no germination will be called cemetery state. We will assume
that the time the seed lasts in one state has an exponential distribution and each
stage is independent of each other. So we have a stochastic model in which
we can determine the average time of the first germination, the time at which the
change in the germination rate occurs (this is why we have an S-shape curve) and
the accumulated germination percentage fit the data [2] quite well. Assuming the
rate is constant between successive stages Thornley [12] found that the waiting
time of germination has gamma distribution, we get this as particular case. Some
very interesting models that also considers stages in the germination process
appears in [6, 14], in these models a cemetery state is not considered as we do
here.

The paper is organized as follows. In Section 2 we present the stochastic
model and in Section 3 we discuss some important particular cases. In the last
section we present some conclusions.

2 Description of the stochastic model

Let us consider a model for seed germination where c, 1, 2, ..., g− 1, g represent
the different states in the process of germination. Here c is the cemetery state
(the non germination of the seed) and g is the germination state. Such states are
absorbing states, this means that once the seed takes one of these two states the
seed remains permanently in such state, the other states are non absorbing.

The germination model of a seed is as follows. At time 0 the seed is in state
1 (the water uptake by the seed). We suppose the seed remains there until some
positive time τ1, after the seed jumps to one of the states c or 2 with probability
a1 and b1, respectively (then, a1 + b1 = 1). If the seed reaches the state c it
remains there permanently. If the seed reaches the state 2 it remains there until
some positive time τ2, at which time the seed jumps to one of the states c or 3
with probability a2 and b2, respectively (a2+ b2 = 1). Again, if the seed reaches
the state c it remains there permanently, if not the process evolves as before.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 27(2): 355–365, Jul–Dec 2020



358 J. VILLA-MORALES

When the seed is in state g − 1 it remains there until some positive time τg−1,
after the seed jumps to one of the states c or g with probability ag−1 and bg−1,
respectively (ag−1+ bg−1 = 1), and remains there permanently. We will assume
the times τi are exponentially distributed with density:

fτi(t) = λie
−λit, t ≥ 0.

Under these considerations the stochastic process:

X(t) =


x1, 0 ≤ t < τ1,
x2, τ1 ≤ t < τ2,
x3, τ2 ≤ t < τ3,

...
...

is a Markov pure jump process, where x1 = 1, xi ∈ {c, i} with i ∈ {2, 3, . . . ,
g − 1, g}. The random variable X(t) represent the state of the seed at time t.

Let us suppose the Markov pure jump process X , with state space
S = {c, 1, 2, . . . , g − 1, g}, is defined on a probability space (Ω,F , P ). For
such process the corresponding Q-matrix is (see [8]):

(qi,j) =



0 0 0 0 0 0 0
λ1a1 −λ1 λ1b1 0 0 0 0
λ2a2 0 −λ2 λ2b2 0 0 0
λ3a3 0 0 −λ3 λ3b3 0 0

...
...

...
...

...
. . .

...
λg−1ag−1 0 0 0 0 −λg−1 λg−1bg−1

0 0 0 0 0 0 0


.

In this case the numbers 1/λi > 0 represent the mean time the seed is in the
state i. Moreover, λiai and λibi represent the rate of going from the state i to
the state c or i+ 1, respectively (see [11]). If Pi,j(t) denotes the probability that
the process X starting in state i will be in state j at time t, then we have the
following system of ordinary differential equations, see [11] or [8].

P ′
i,j(t) =

∑
k∈S

Pi,k(t)qk,j , t > 0.

With initial condition :

Pi,k(0) =

{
1, i = k,
0, i ̸= k.

(1)
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The resulting differential equations are, for i ∈ {c, 1, . . . , g}:

P ′
i,1(t) = −Pi,1(t)λ1,

P ′
i,j(t) = Pi,j−1(t)λj−1bj−1 − P1,j(t)λj .

for j ∈ {2, 3, . . . , g − 1} and:

P ′
i,g(t) = Pi,g−1(t)λg−1bg−1,

P ′
i,c(t) = Pi,1(t)λ1a1 + Pi,2(t)λ2a2 + · · ·+ Pi,g−1(t)λg−1ag−1.

The recursive solution for such system, with initial condition (1), is:

Pi,1(t) = e−λ1t,

Pi,j(t) = λj−1bj−1e
−λjt

∫ t

0
eλjrPi,j−1(r)dr,

Pi,g(t) = λg−1bg−1

∫ t

0
Pi,g−1(r)dr,

Pi,c(t) =

∫ t

0
(λ1a1Pi,1(r)+λ2a2Pi,2(r)+· · ·+λg−1ag−1Pi,g−1(r))dr. (2)

The probability Pi,c(t) can also be written as:

Pi,c(t) = 1−
g∑

j=1

Pi,j(t).

On the other hand, let us call G the event of germination of a seed. The event
G occurs if and only if {X(τ1) = 2, X(τ2) = 3, . . . , X(τg−1) = g}, therefore
there is germination with probability b :=

∏g−1
k=1 bk.

Now suppose we sow N seeds and they behave independently during the
germination process. Given a time t each of the N seeds can be in one of the
states x ∈ S = {c, 1, 2, . . . , g − 1, g} with probability P1,x(t). If Yx(t) is the
number of seeds in state x then Y (t) = (Yc(t), Y1(t), . . . , Yg(t)) have multino-
mial distribution with parameter N and (P1,c(t), P1,1(t), . . . , P1,g(t)) and even
more the marginal variables Yx(t) have binomial distribution with parameters
N , P1,x(t). From this, the number of seeds germinated at time t has expectation:

E[Yg(t)] = NP1,g(t).

and variance:
Var [Yg(t)] = NP1,g(t)(1− P1,g(t)).
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3 Discussion

Now let us discuss some particular cases usually considered in the literature.

3.1 There are three states in the germination process

Let us assume that S = {c, 1, 2}, here 2 is the germination state. In this case:

P1,1(t) = e−λ1t,

P1,2(t) = b1(1− e−λ1t),

P1,c(t) = a1(1− e−λ1t).

The germination time of one seed is τ1. If there are N seeds the time for
the first germination is T1 := min{τ11 , ..., τN1 } where τ i1 is the time the i-th
seed takes to germinate. The time of the first germination T1 has exponential
distribution with parameter Nλ1, therefore T1 has mean:

E[T1] =
1

Nλ1
,

and variance :

Var [T1] =
1

N2(λ1)2
.

Moreover :

E[Y2(t)] = Nb1(1− e−λ1t),

Var [Y2(t)] = Nb1(1− e−λ1t)(1− b1(1− e−λ1t)).

The mean of germinable seeds is N − E[Y2(t)]− E[Yc(t)], then:

N − E[Y2(t)]− E[Yc(t)] = Ne−λ1t.

This case corresponds to the linear relationship, found in [4], between the loga-
rithm of the number of germinable seeds and the time.

3.2 The average time in each stage of the germination process is
constant

Now let us consider the case when λi = λ, for i = 1, 2, ..., g − 1, this means the
average time in each state does not depend on this one. In this case we can have
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an explicit solution to the system (2):

P1,1(t) = e−λt,

P1,j(t) =

(
j−1∏
k=1

bk

)
λj−1

(j − 1)!
tj−1e−λt,

P1,g(t) =

(
g−1∏
k=1

bk

)
λg−1

(g − 2)!

∫ t

0
e−λrrg−2dr. (3)

Otherwise, conditioning on germination, the germination time Tg is given by
τ1+ τ2+ · · ·+ τg−1, where each random variable τi has exponential distribution
with parameter λ, therefore the conditional distribution of Tg is a gamma distri-
bution with parameters g and gλ, that is the conditional density function is given
by:

fTg(t) =
λg−1tg−2

(g − 2)!
e−λt, t ≥ 0.

One easy way to deduce (3) is observing that:

{X(t) = g} = {Tg ≤ t} ∩G,

then:

P1,g(t) = P (X(t) = g|X(0) = 1) = P (G)P (Tg ≤ t|X(0) = 1, G).

Remember that P (G) =
∏g−1

k=1 bk.

Using mathematical induction (on g) it can be proved that:∫ t

0
e−λrrg−2dr =

(g − 2)!

λg−1
− e−λt

λ

(
tg−2 +

(g − 2)tg−3

λ
+ · · ·+ (g − 2)!

λg−2

)
,

then (3) implies:

P1,g(t) =

(
g−1∏
k=1

bk

)[
1− e−λt

g−2∑
k=0

(λt)k

k!

]
.

Therefore, when the cemetery state is not considered in the model we get as
particular case the model introduced in [14].

If we have N seeds then:

E[Yg(t)] = N

(
g−1∏
k=1

bk

)[
1− e−λt

g−2∑
k=0

(λt)k

k!

]
.
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Therefore, the percentage of seeds germinated at time t is on average:

E[Yg(t)]

N
× 100. (4)

As we will see this function on t has an S-shape and can be used to fit the ger-
mination data given in [2].

If we denote by P̃ (·) = P (·|G) the conditional probability on germination,
then the first time to germination have men:

Ẽ
[
min{T 1

g , ..., T
N
g }
]

=

∫ ∞

0
P̃ (min{T 1

g , ..., T
N
g } > t)dt

=

∫ ∞

0

(
N∏
k=1

P̃ (T k
g > t)

)
dt

=

∫ ∞

0

(
P̃ (T k

g > t)
)N

dt

=

∫ ∞

0

(
1− P̃ (T k

g ≤ t)
)N

dt

=

∫ ∞

0
e−Nλt

(
g−2∑
k=0

(λt)k

k!

)N

dt,

where Ẽ is the expectation with respect to the conditional probability
measure P̃ .

3.3 Fitting an experimental data

In this subsection we are going to consider the experimental data of Bould and
Abrol [2]. Let us suppose that 100 seeds of tomato are sown, under constant
temperature, of which 98 germinated. In this case N = 100 and we can take for
the probability of germination b = 98/100 = 0.98. As in [14] we will suppose
the model consider 9 stages and in each of them the seed stays a mean time of
1/λ = 1.8532/days. Under this considerations the function to fit the data is
(see (4))

M(t) = (100)(0.98)

[
1− e−(0.5396)t

7∑
k=0

((0.5396)t)k

k!

]
, t ≥ 0.

In Figure 1 we can see how well the function M fits the data given in [2]. In par-
ticular, if we take d2

dt2
M(t) = 0 we see that the rate of germination grows below
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Figure 1: The continuous line is the function M(t) and red ◦ are the experimental data
in [2].

t = 12.973 and decreases above t = 12.973. This means that, the maximum rate
of germination is at the 13th day of sowing the seeds.

On the other hand, conditioning on the event that there is germination, the
expected time for the first germination is:

∫ ∞

0
e−100(0.5396)t

(
7∑

k=0

((0.5396)t)k

k!

)100

dt = 5.008

which is very close with the day reported in [2] (see Figure 1).
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4 Concluding remarks

Using the tools of continuous-time Markov chains we get a unambiguous, ame-
nable and a concise germination model. Moreover the proposed model is
consistent with the existing literature about it and the data are very well fit-
ted. The parameters in the model have a specific interpretation, for example,
for the data in [2] we have the cemetery state, the germination state and seven
intermediate stages, each of them with a duration of almost two days on average
(1/0.5396 = 1.8532). The stochastic model suggests that, in general, germina-
tion data do not follow a normal distribution, as many research assume [7]. It is
more natural to assume that the data come from a gamma distribution. Indeed,
from Figure 1 we see that the sample mean is between the 14th and 15th day
and if we assume that the data in [2] come from a gamma distribution with pa-
rameters 8 and 0.5396, then the mean is 14.8257 and moreover the median is
14.2128. We see how well the mean of a gamma distribution predicts the sample
mean. It is worth mention that the variance is (27.4755) larger than desired and
this may be due to intrinsic factors of the seeds themselves (weight of the seeds,
for example).
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