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A Appendix

A.1 Cantiliver design problem [8]

The Cantilever beam is made of five elements, each having a hollow cross-
section with constant thickness. The beam is rigidly supported as shown, and
three is an external vertical force acting at the free end of the cantilever. The
weight of the beam is to be minimized while assigning an upper limit on the
vertical displacement of the free end.

The design variables are the heights (or widths) xi of the cross-section of the
each element. The lower bounds on the these design variables are very small and
the upper bounds very large so they do not become active in the problem. The
problem is formulated as follows:

Minimize f(x) = 0.0624(x1 + x2 + x3 + x4 + x5)

s.t.
g1(x) =

61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
≤ 1.0

1 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4, 5} .

Solution found:

x∗ = (5.80832436167656592, 2.88233457568314051, 4.21582930749505342,

3.44602689729287517, 2.08988145846961546).

F ∗ = 1.150805547878516.
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A.2 Two-bar truss design problem [8]

The two-bar truss problem consist of two design variables: a sizing variable
x1 which is the cross-sectional area of the bars and the configuration variable
x2 representing half the distance between the lower nodes. An external force,
|F | = 200kN , Fy = 8Fx, acts on node 3 and the objective is to minimize the
weight of the truss while keeping the tensile or compressive stress in each bar
below 100N/mm2. The problem is formulated in closed form as:

Minimize f(x) = x1

√
1 + x22

s.t.

g1(x) = 0.124
√

1 + x22

(
8

x1
+

1

x1x2

)
≤ 1.0 (bar1),

g2(x) = 0.124
√

1 + x22

(
8

x1
− 1

x1x2

)
≤ 1.0 (bar2),

0.2 ≤ x1 ≤ 4.0, 0.1 ≤ x2 ≤ 1.6.

Solution found:

x∗ = (1.41274204233180889, 0.37472108515071976)

F ∗ = 1.508670852887466.

A.3 Three-bar truss design problem [29]

The three-bar truss problem consist of two design variables: The volume of the
truss structure is to be minimized subject to stress constraints. The problem is
formulated as:

Minimize f(x) =
(
2
√
2x1 + x2

}
L

s.t.

g1(x) =

( √
2x1 + x2√

2x21 + 2x1x2

)
P ≤ 2,

g2(x) =

(
1

x1 +
√
2x2

)
P ≤ 2,

g3(x) =

(
2√

2x21 + 2x1x2

)
P ≤ 2,
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where 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. The other constants are L = 100cm,
P = 2kN/cm2.
Solution found:

x∗ = (0.79271422810570653, 0.39694263279557871).

F ∗ = 263.90770577419977.

A.4 Welded beam design problem [11]

A welded beam design optimization problem, which is often used for the eval-
uation of optimization methods, is used to illustrate the implementation proce-
dure of the proposed approach for solving optimization problems. The beam
has a length of 14 in. and P=6,000 lb force is applied at the end of the beam.
The welded beam is designed for minimum cost subject to constraints on shear
stress, bending stress in the beam, buckling load on the bar, end deflection of
the beam, and side constraints. The design variables are thickness of the weld
h(x1), length of the weld l(x2), width of the beam t(x3), and thickness of the
beam b(x4). The mathematical model of the welded beam optimization problem
is defined as

Minimize fw(x) = 1.1047x21x2 + 0.04811x3x4(14.0 + x2)

s.t.
g1(x) = 13, 600− τ(x) ≥ 0,

g2(x) = 30, 000− σ(x) ≥ 0,

g3(x) = x4 − x1 ≥ 0,

g4(x) = 0.10471(x21)− 0.04811x3x4(14.0 + x2) + 5.0 ≥ 0,

g5(x) = x1 − 0.125 ≥ 0,

g6(x) = 0.25− δ(x) ≥ 0,

g7(x) = Pc(x)− 6, 000 ≥ 0,

0.1 ≤ x1, x2 ≤ 5

0.1 ≤ x3, x4 ≤ 10.

The terms τ(x), σ(x), Pc(x), δ(x) are given below

τ(x) =

√
(τ ′)2 + (2τ ′τ ′′)

x2
2R

+ (τ ′′)2
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τ ′(x) =
6000√
2x1x2

τ ′′(x) =
6000(14 + x2

2 )
√

0.25(x22) + ((x1 + x3)/2)2

2[x1x2
√
2(x22/12 + 0.25(x1 + x3)2)]

σ(x) =
504, 000

x23x4

δ(x) =
65, 856, 000

(30× 106)x4x33

Pc(x) =
4.013(30× 106)

√
x2
3x

6
4

36

196

1−
x3

√
30×106

4(12×106)

28

 .

Solution found:

x∗ = (0.20586359479354222, 3.46334453602819113,

9.04774674254588592, 0.20586428001618971).

F ∗ = 1.727036254666027.

A.5 Weight tension/compression spring problem [2] [5]

This problem minimizes the weight of a tension/compression spring, subject to
constraints of minimum deflection, shear stress, surge frequency, and limits on
outside diameter and on design variables. There are three design variables: the
wire diameter x1, the mean coil diameter x2, and the number of active coils x3.
The mathematical formulation of this problem is:

Minimize f(x) = (x3 + 2)x2x
2
1

s.t.

g1(x) = 1− x32x3
71785x44

≤ 0,

g2(x) =
4x22 − x1x2

12566(x2x31 − x41)
+

1

5108x21
− 1 ≤ 0,

g3(x) = 1− 140.45x1
x22x3

≤ 0,

g4(x) =
x2 + x1
1.5

− 1 ≤ 0,
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Solution found:

x∗ = (0.05044713178541634, 0.32746441361099429, 13.23998350856038107)

F ∗ = 0.012700521857.

A.6 Pressure vessel design (six inequalities)

The pressure vessel design, was previously analysed by Sandgren [32] who first
proposed this problem to minimize the total cost of the material, forming and
welding of a cylindrical vessel. There are four design variables: x1 (Ts, shell
thickness), x2 (Th, spherical head thickness), x3 (R, radius of cylindrical shell)
and x4 (L, shell length). Ts (=x1) and Th (=x2) are integer multipliers of 0.0625
in. In accordance with the available thickness of rolled steel plates, and R (=x3)
and L (=x4) have continuous values of 40 ≤ R ≤ 80in. and 20 ≤ L ≤ 60in.,
respectively. The mathematical formulation of the optimization problem is as
follows:

Minimize f(x) = 0.6224x1x2x3 + 1.7781x2x
3
3 + 3.1611x21x4 + 19.84x21x3

s.t.
g1(x) = 0.0193x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x2 ≤ 0,

g3(x) = 750.0× 1728.0− πx23x4 −
4

3
πx23 ≤ 0,

g4(x) = x4 − 240.0 ≤ 0,

g5(x) = 1.1− x1 ≤ 0,

g6(x) = 0.6− x2 ≤ 0,

Solution found:

x∗ = (1.125, 0.625, 58.2900704783923345, 43.6931234586562753)

F ∗ = 7197.73412633523851.
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A.7 Pressure vessel design (four inequalities)

Another variation of this problem, that has two inequalities minus (g5 and g6 are
eliminated) and the following bounds 1×0.0625 ≤ x1, x2 ≤ 99×0.0625, 10.0 ≤
x3, x4 ≤ 200.0 has been solved by others researchers.
Solution found by our approach:

x∗ = (0.875, 0.4375, 45.3366721064070408, 140.255022911949085).

F ∗ = 6090.53937693476024.

A.8 Speed reducer design (continuous-integer variables)

The design of the speed reducer [20], is considered with the face width x1, mod-
ule of teeth x2, number of teeth on pinion x3, length of the first shaft between
bearings x4, length of the second shaft between bearings x5, diameter of the first
shaft x6, and diameter of the first shaft x7 (all variables continuous except x3 that
is integer). The weight of the speed reducer is to be minimized subject to con-
straints on bending stress of the gear teeth, surface stress, transverse deflections
of the shafts and stresses in the shaft. The problem is formulated as follows:

Minimize f(x) = 0.7854x1x
2
1(3.3333x

2
3 + 14.9334x3 − 43.0934)

−1.508x1(x
2
6 + x27) + 7.4777(x36 + x37) + 0.7854(x4x

2
6 + x5x

2
7)

s.t.
g1(x) =

27

x1x22x3
− 1 ≤ 0,

g2(x) =
397.5

x1x22x
2
3

− 1 ≤ 0,

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0,

g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0,

g5(x) =
1.0

110.0x36

√(
745.0x4
x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1.0

85.0x37

√(
745.0x5
x2x3

)2

+ 157.5× 106 − 1 ≤ 0,
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g7(x) =
x2x3
40

− 1 ≤ 0,

g8(x) =
5x2
x1

− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

wuth 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

Solution found by our approach:

x∗ = (3.50002615416866586, 0.70000523059661887, 17, 7.30022922985589972,

7.8000228842193966, 3.35021507672250302, 5.28669973187709912).

F ∗ = 2996.3951944729081.

A.9 Speed reducer design (integer-discrete variables)

Another variation of this problem with the variables defined as follows: x1, x2,
x4, and x5 must be integral multiples of 0.1. x6 and x7 must be integral multiples
of 0.01, and x3 must be an integer.

Solution found by our approach:

x∗ = (3.3, 0.7, 17.0, 7.3, 7.8, 3.36, 5.29).

F ∗ = 2922.43527186608.
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