SciELO - Scientific Electronic Library Online

 
vol.25 número1Analytical treatment of the hopf Bifurcation in an extension of the lü systemThe Stock Market Sentiment As A Dynamical System índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Matemática Teoría y Aplicaciones

versão impressa ISSN 1409-2433

Rev. Mat vol.25 no.1 San José Jan./Jun. 2018

http://dx.doi.org/10.15517/rmta.v1i25.32231 

Artículos

Método de elementos espectrales de Galerkin discontinuo para calcular Reflexión y transmisión de ondas electromagnéticas

Discontinuous galerkin spectral Element method to compute reflection And transmission of electromagnetic Waves

Mónica Mesa-Mazo1 

César Acosta-Minoli2 

Hernán Toro-Zapata3 

1Facultad de Educación, Universidad del Quindío, Armenia, Colombia. E-Mail: mjmesa@uniquindio.edu.co

2Misma dirección que/Same address as: M. Mesa- Mazo.E-Mail: cminoli@uniquindio.edu.co

3Misma dirección que/Same address as: M. Mesa-Mazo.E-Mail: hdtoro@uniquindio.edu.co

Resumen

Este trabajo tiene por objetivo presentar el desarrollo y la validación de un algoritmo de alto orden de precisión, basado en el método de elementos espectrales nodal de Galerkin discontinuo, por su siglas en inglés (DGSEM), para calcular la reflexión y la transmisión de ondas electromagnéticas viajando en dos medios isotrópicos y homogéneos, los cuales se encuentran separados por una interfaz plana vertical con características diferentes de permitividad ε y permeabilidad µ. Para discretizar espacialmente se derivó el método DGSEM sobre las ecuaciones de Maxwell. Posteriormente, se derivó un resolvente de Riemann para calcular el flujo numérico entre los elementos que componen la malla del dominio computacional, para calcular la reflexión y la transmisión de onda en la interfaz, y para introducir las respectivas condiciones de frontera. Finalmente, para discretizar en el tiempo, se utilizó el método de Runge-Kutta explícito de tercer orden de Williamson. Los resultados del algoritmo, en comparación con la solución analítica, demuestran convergencia espectral en el espacio y de tercer orden en el tiempo.

Palabras clave: método espectral de Galerkin discontinuo; ondas electromagnéticas; electromagnetismo computacional; reflexión y transmisión

Abstract

Modeling wave reflection and transmission is important for a diversity of applications in physics and engineering. Examples can be found in acoustics and electromagnetism. Computational wave propagation requires high order accuracy both in space and time to get accurate phase and dissipation properties. In this paper we derive and evaluate a high order accurate method based on Discontinuous Galerkin Spectral Element Method (DGSEM) to compute reflection and transmission of electromagnetic waves traveling in two homogeneous and isotropic media, separated by a thin plane interfaz, with different physical properties of permittivity ε and permeability µ. To discretize in Space we used DGSEM over a two dimensional Transverse Electric Maxwell Equations. We derived a Riemann solver to compute the numerical flux between the interfaces of two elements of the computational mesh and to add boundary conditions. To discretize in time we use a third order low storage Runge-Kutta of Williamson. Results when compared with the analytical solution, showed spectral convergence in space and third order convergence in time.

Keywords: discontinous Galerkin spectral element method; electromagnetic waves; computational electromagnetism; reflection and transmission

VER CONTENIDO COMPLETO EN PDF

Agradecimientos

Esta investigación fue apoyada por la Universidad del Quindío mediante el proyecto de investigación con código 679.

Referencias

Acosta-Minoli, C.A.; Kopriva, D.A. (2012) “Boundary states at reflective moving boundaries", Journal of Computational Physics 231(11): 4160- 4184. [ Links ]

Acosta-Minoli, C.A.; Kopriva, D.A. (2010) “Discontinuous Galerkin spectral element approximations on moving meshes", Journal of Computational Physics 230(15): 1876-1902. [ Links ]

Black, K. (1999) “A conservative spectral element method for the approximation of compressible fluid flow", Kybernetica vol(35): 133-146. [ Links ]

Canuto, C.; Hussaini M.Y.; Quarteroni A. (2006) Spectral Methods: Fundamentals in Single Domains. Springer, Netherlands. [ Links ]

Censor, D. (2004) “Non-relativistic scattering by time-varying bodies and media", Progress in Electromagnetics Research 48(1): 249-278. [ Links ]

Etienne S.; Garon, A.; Pelletier, D. (2009) “Perspective on the geometric conservation law and finite element methods for ale simulations of incompressible flow", Journal of Computational Physics vol(228): 2313-2333. [ Links ]

Kopriva, D.A. (1986) “A spectral multidomain method for the solution of hyperbolic systems", Applied Numerical Mathematics 2(3): 221-241. [ Links ]

Kopriva, D.A.; Woodruff, S.; Hussaini, M.Y. (2002) “Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method", International Journal for Numerical Methods in Engineering 53(1): 105-122. [ Links ]

Kopriva, D.A. (2006) “Metric identities and the discontinuous spectral element method on curvilinear meshes", Journal of Scientific Computing 26(3): 301-327. [ Links ]

Kopriva, D.A. (2009) Implementing Spectral Methods for Partial Differential Equations. Springer, Netherlands. [ Links ]

Lee, S.W.; Mittra, R. (1967) “Scattering of electromagnetic waves by a moving cylinder in free space", Canadian Journal of Physics 45(9): 2999- 3007. [ Links ]

Mohammadian, A.H.; Shankar, V.; Hall, W.F. (1991) “Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure", Computer Physics Communications 68(1-3): 175-196. [ Links ]

Orfinadis, S. (2008) “Electromagnetic waves and antennas", en: http://www.ece.rutgers.edu/~orfanidi/ewa, consultado el 11/03/2017. [ Links ]

Patera, A.T. (1984) “A spectral element method for fluid dynamics laminar flow in a channel expansion", Journal of Computational Physics 54(3): 468-488. [ Links ]

Shang, J.S. (1997) “Characteristic-based methods in computational electromagnetics", Computational Electromagnetics and its Applications. Kluwer Academic Publishers. [ Links ]

Toro, E.F. (2006) Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 2 ed. Springer-Verlag, Berlin, Heidelberg. [ Links ]

Williamson, J.H. (1980) “Low storage Runge Kutta schemes", Journal of Computational Physics 35(1): 48-56 [ Links ]

Recibido: 05 de Septiembre de 2016; Revisado: 05 de Junio de 2017; Aprobado: 18 de Agosto de 2017

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons