SciELO - Scientific Electronic Library Online

 
vol.18 issue2Parallelization of a quantum-classic hybrid model for nanoscale semiconductor devicesA Hybrid Random Number Generator (HRNG) un generador híbrido de números aleatorios author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Matemática Teoría y Aplicaciones

Print version ISSN 1409-2433

Rev. Mat vol.18 n.2 San José Dec. 2011

 

Preference of effective factors in suitable selection of Microtunnel Boring Machines (MTBM) by using the Fuzzy Analytic Hierarchy Process (FAHP) approach

Preferencia de factores de efectividad en la selección apropiada de Máquinas Taladradoras de Microtúnel (MTBM) usando el enfoque del Proceso Jerárquico Analítico Difuso (FACH)

Alireza Jafari*
Mohammad Ataie
Sayed Mohammad Esmaiel Jalali
Ahmad Ramazanzadeh§


*Faculty of Mining Engineering, Petroleum & Geophysics, Shahrood University of Technology, Hafte-Tir Square, Shahrood, Iran. E-Mail: ataei@shahroodut.ac.ir
†Same address as A. Jafari. E-Mail: ataei@shahroodut.ac.ir
‡Same address as A. Jafari. E-Mail: jalalisme@shahroodut.ac.ir
§Same address as A. Jafari. E-Mail: aramezanzadeh@gmail.com

Dirección para correspondencia


Abstract

The development of underground infrastructure, environmental concerns, and economic trend is influencing society. Due to the increasingly critical nature of installations of utility systems especially in congested areas, the need for monitoring and control system has increased. The microtunneling system will therefore have to provide for possibility of minimized surface disruption. Suitable selection of Microtunneling Boring Machine (MTBM) is the most curial decision that manager must be done. Because once the trenchless excavation has started, it might be too late to make any changes in equipment without extra costs and delays. Therefore, the various factors and parameters are affecting the choice of machine. In this paper discusses a developed methodology based on Fuzzy Analytic Hierarchy Process (FAHP) in order to determine weights of the criteria and sub criteria and then ranking them. Within the proposed model, four criteria site, machinery, structural, labor force impact and 18 sub-criteria are specified. The linguistic level of comparisons produced by experts are tapped and constructed in a form of triangular fuzzy numbers in order to construct fuzzy pair wise comparison matrices. Therefore, FAHP uses the pair wise comparison matrices for determining the weights of the criteria and sub-criteria.

Keywords: Microtunnel Boring Machines (MTBMs); Fuzzy Analytic Hierarchy Process (FAHP); trenchless technology.

Resumen

El desarrollo de infraestructura subterránea, con preocupaciones ambientales y tendencias económicas, está influyendo a la sociedad. Debido a la naturaleza crecientemente crítica de las instalaciones de sistemas utilitarios, especialmente en áreas congestionadas, ha aumentado la necesidad de sistemas de monitoreo y control. Por lo tanto el sistema de microtunelación ayudará a minimizar la superficie perturbada. La selección adecuada de Máquinas Taladradoras de Microtúnel (MTBM, por sus siglas en inglés) es la decisión más juiciosa que puede hacerse, puesto que una vez que la excavación sin zanjas ha iniciado, podría ser muy tarde para hacer cambios en el equipo sin un costo ni atrasos adicionales. Luego, los diversos factores y parámetros afectan la escogencia de la máquina. En este artículo se discute una metodología desarrollada, que se basa en el Proceso Jerárquico Analítico Difuso (FACH) para determinar pesos de los criterios y subcriterios, y luego ordenarlos. En el modelo propuesto se especifican cuatro criterios de sitio, maquinaria, estructura, impacto de la fuerza laboral y 18 subcriterios. Los niveles lingüísticos de comparaciones producidos por expertos se construyen en forma de números difusos triangulares para construir matrices de comparación difusa por parejas. Por lo tanto el FAHP usa las matrices de comparación por parejas para determinar los pesos de los criterios y subcriterios.

Palabras clave: Máquinas Taladradoras de Microtúnel (MTBMs), Proceso Jerárquico Analítico Difuso (FAHP), tecnología sin zanjas.

Mathematics Subject Classification: 90C99.



Ver contenido disponible en pdf


References

[1] Arseh Andish Consulting Eng. (2005) “Hamadan city sewerage project”, Report No. 205–00.         [ Links ]

[2] ASCE (2001) “Standard construction guideline for micro tunneling”, Committee Ballot, Revision 7, 1998, Reston, VA.         [ Links ]

[3] Chen, C.T.; Lin, C.T.; Huang, S.F. (2006) “A fuzzy approach for supplier evaluation and selection in supply chain management”, International Journal of Production Economics 102: 289–301.         [ Links ]

[4] Chang, D.Y. (1996) “Applications of the extent analysis method on fuzzy AHP”, European Journal of Operational Research 95: 649–655.         [ Links ]

[5] Chan, F.T.S.; Kumar, N. (2007) “ Global supplier development considering risk factors using fuzzy extended AHP-based approach”, Omega 35: 417–431.         [ Links ]

[6] FSTT (2006) “Micro tunneling and horizontal drilling”, Published by ISTE Ltd. Page No. 343.         [ Links ]

[7] Golindo, J.; Urrutia, A.; Piattini, M. (2006) Fuzzy databases: Modeling, Design and Implementation. Idea Group Publishing, Hershey PA.         [ Links ]

[8] Jafari, A. (2009) Suitable Selection of Microtunnel Boring Machines (MTBMs) by Using the Fuzzy Analytic Hierarchy Process (FAHP) Approach. Unpublished M.Sc. Thesis, Shahrood University of Technology, Iran.         [ Links ]


[9] Jang, J.S.R.; Sun, C.T.; Mizutani, E. (1997) Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Englewood Cliffs.         [ Links ]

[10] Kahraman, C.; Cebeci, U.; Ulukan, Z. (2003) “Multi-criteria supplier selection using fuzzy AHP”, Logistics Information Management 16(6):382–394.         [ Links ]


[11] Lai, Y.J.; Hwang, C.L. (1996) Fuzzy Multiple Objective Decision Making. Springer, Berlin.         [ Links ]

[12] Moser, A.P.; Folkman, S.L. (2008) Buried Pipe Design. McGraw-Hill, New York.         [ Links ]


[13] Najafi, M.; Gokhale, S.B. (2005) Trenchless technology: Pipeline and utility design, construction and renewal. McGraw-Hill, New York.         [ Links ]

[14] Read, G.F. (Ed.) (2004) Sewers: Replacement and New Construction. Elsevier, Oxford.         [ Links ]


[15] Siler, W.; Buckly, J. (2005) Fuzzy Expert Systems and Fuzzy Reasoning. John Wiley & Sons, New York.         [ Links ]


[16] Saaty, T.L. (1980) The Analytic Hierarchy Process. McGraw-Hill, New York.         [ Links ]


[17] Zadeh, L.A. (1965) “Fuzzy sets”, Inf. Control 8: 338–353.         [ Links ]


[18] Zadeh, L.A. (1992) “Fuzzy logic, neural networks, and soft computing”, One-page course announcement of CS 294-4, The University of California at Berkeley.         [ Links ]

[19] Wei, C.C.; Chien, C.F.; Wang, M.J. (2005) “An AHP-based approach to ERP system selection”, International Journal of Production Economic 96: 47–62.         [ Links ]



Correspondencia a:
Alireza Jafari, Mohammad Ataie, Sayed Mohammad Esmaiel Jalali & Ahmad Ramazanzadeh. Faculty of Mining Engineering, Petroleum & Geophysics, Shahrood University of Technology, Hafte-Tir Square, Shahrood, Iran. E-Mail: ataei@shahroodut.ac.ir, jalalisme@shahroodut.ac.ir, aramezanzadeh@gmail.com


Received: 6 Apr 2010; Revised: 20 May 2011; Accepted: 1 Jun 2011

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License