SciELO - Scientific Electronic Library Online

 
vol.69 suppl.2Subtidal habitats diversity of Santa Elena Peninsula and Murciélago Islands, North Pacific, Costa RicaCondition of the Playa Blanca coral reef, Punta Gorda, one of the most extensive reefs on the Pacific of Costa Rica author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Rev. biol. trop vol.69  suppl.2 San José Oct. 2021

http://dx.doi.org/10.15517/rbt.v69is2.48316 

Artículo

Checklist of invertebrates and conspicuous fishes in rocky reefs and Sargassum beds in the North Pacific of Costa Rica

Listado de invertebrados y peces conspicuos en arrecifes rocosos y mantos de Sargassum en el Pacífico Norte de Costa Rica

Alvin Suárez1  2 
http://orcid.org/0000-0003-2394-2685

Rafael Riosmena-Rodríguez1 

Jorge Cortés3 
http://orcid.org/0000-0001-7004-8649

1. Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México; SargassumGC@gmail.com

2. Centro de Estudios Biológicos, Medio Ambiente y Recursos Naturales, A.C. Felipe Carrillo Puerto, Quintana Roo, México.

3. Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica; jorge.cortes@ucr.ac.cr

Abstract

Introduction:

The marine biodiversity is well known in some areas and for some marine ecosystems of the Pacific coast of Costa Rica. The marine sector of Área de Conservación Guanacaste, in the North Pacific of the country, is a priority area for conservation of marine and coastal biodiversity.

Objective:

Our aim was to increase the knowledge of marine biodiversity in a conservation priority site in Costa Rica and in poorly or scarcely studied marine ecosystems, such as rocky reefs and Sargassum beds, respectively.

Methods:

The study was conducted in Bahía Salinas and Golfo de Santa Elena in 2013. In January, four rocky reefs were visited; while in February three rocky reefs and one Sargassum bed were visited. We identified the macroinvertebrates and conspicuous fish species through underwater visual census methods (timed swim and band transects). The mean density of each species was estimated through band transects method.

Results:

A total of 25 invertebrates and 34 fish species were identified. We found a high number of species of invertebrates (23) and fish species (33) in rocky reefs, but few species on Sargassum beds (eight invertebrates and ten fish species). Species composition differed between marine ecosystems.

Conclusions:

Our study further evidence the limited knowledge of invertebrates and fish communities in these marine ecosystems in the North Pacific of Costa Rica. Considerably more surveys and field work are required to support management decisions that are backed by sound scientific knowledge.

Key words: echinoderms; mollusks; fishes; marine ecosystems; conservation priority site; Área de Conservación Guanacaste.

Resumen

Introducción:

La biodiversidad marina es bien conocida en algunas áreas y para algunos ecosistemas marinos de la costa Pacífica de Costa Rica. El sector marino del Área de Conservación Guanacaste, en el Pacífico norte del país, es un área prioritaria para la conservación de la biodiversidad marina y costera.

Objetivo:

Nuestro objetivo fue el de incrementar el conocimiento de la biodiversidad marina en un sitio prioritario de conservación de Costa Rica y en ecosistemas marinos poco o nulamente estudiados, como son los arrecifes rocosos y mantos de Sargassum, respectivamente.

Métodos:

El estudio se realizó en Bahía Salinas y Golfo de Santa Elena en el 2013. En enero, cuatro arrecifes rocosos fueron visitados; mientras que en febrero tres arrecifes rocosos y un manto de Sargassum fueron visitados. Identificamos las especies de invertebrados y peces conspicuos a través métodos de censos visuales submarinos (buceos cronometrados y transectos de banda). La densidad promedio de cada especie se estimó mediante el método de transectos de banda.

Resultados:

Se registró un total de 25 invertebrados y 34 especies de peces. Encontramos un mayor número de especies de invertebrados (23) y peces (33) en los arrecifes rocosos, pero pocas especies en el manto de Sargassum (ocho especies de invertebrados y diez de peces). La composición de especies difirió entre ecosistemas marinos.

Conclusiones:

Nuestro estudio evidencia el limitado conocimiento de las comunidades de invertebrados y peces en estos ecosistemas marinos en el Pacífico Norte de Costa Rica. Considerablemente más encuestas y trabajo de campo son requeridos para apoyar decisiones de manejo que sean respaldados por conocimientos científicos solidos.

Palabras clave: equinodermos; moluscos; peces; sitio prioritario de conservación; Área de Conservación Guanacaste

Introduction

The marine biodiversity of the Pacific coast of Costa Rica is well known in some areas (i.e., Bahía Culebra, Golfo de Nicoya, Isla del Caño and Golfo Dulce). Other marine areas remain poorly studied, with little information available or far from complete, like the north Pacific of Costa Rica (Bahía Salinas and Golfo de Santa Elena) (Cortés, 2016; Cortés, 2017; Wehrtmann & Cortés, 2009). The same occurs regarding coastal ecosystems since some, such as coral reefs, have been relatively well studied (Alvarado, Beita-Jiménez, Mena, Fernández-García & Guzmán-Mora, 2015; Alvarado, Beita-Jiménez, Mena, Fernández-García, Guzmán-Mora, & Cortés, 2016; Alvarado Beita-Jiménez, Mena, Fernández-García, Cortés, Sánchez-Noguera, Jiménez, & Guzmán-Mora, 2018; Cortés, 1996/1997); while in others the research and publications on marine biodiversity are scarce (such as sandy beaches and rocky coast) (Dexter, 1974; Madrigal-Castro, Cabrera-Peña, Monge-Esquivel & Pérez-Acuña, 1984; Ortega, 1987; Sibaja-Cordero & Cortés, 2008; Sibaja-Cordero, Camacho-García & Vargas-Castillo, 2014).

The Área de Conservación Guanacaste (ACG) is one of eleven Conservation Areas within Costa Rica and it was declared a UNESCO World Heritage Site in 1999 (SINAC, 2012; UNESCO, 2020). The marine sector of ACG, recognized as a conservation priority site for marine and coastal biodiversity within Marine Ecological Unit Papagayo in the north Pacific of Costa Rica (Alvarado, Herrera, Corrales, Asch, & Paaby, 2011; SINAC-MINAET, 2008), has a high species richness and high diversity coastal and marine ecosystems, such as mangrove forest, beaches, bays and coves, rocky intertidal zones, mud flats, rocky subtidal sites, coral reefs, rhodolith beds, deep areas, shoals, and several isolated islands (Cortés, 2017; Cortés & Joyce, 2020). During the trade winds season (December to April-May; Rodríguez, Alfaro & Cortés, 2021) it is possible to find marine ecosystem dominated by the brown macroalgae Sargassum liebmannii J.A. Agardh 1847, that grow significantly as a consequence of the upwelling that brings deep cold, nutrient-rich and CO2-rich waters to the surface (Cortés, Samper-Villarreal & Bernecker 2014).

In ACG, including Bahía Salinas (BSa) and Golfo de Santa Elena (GSE), there are some publications on invertebrates and fish communities in coral reef, rocky reef and sandy areas (Alvarado et al., 2018; Cordero-Umaña & Santidrián-Tomillo, 2020). Thus, the aim of the present study is to increase the knowledge of marine biodiversity in this conservation area, specifically on BSa and GSE, and on poorly studied ecosystems like rocky reefs and Sargassum beds. The study provides a checklist of invertebrates and conspicuous fishes species that occur on shallow (6-14 m depth) rocky reefs and Sargassum beds in ACG. In addition, patterns of geographic distribution, number of species, species density and abundance are discussed.

Material and methods

Study site: The study was conducted during January and February 2013 in BSa and GSE, within ACG in the North Pacific of Costa Rica (Fig. 1, Table 1).

Fig. 1 Sampling sites in the North Pacific of Costa Rica. Rocky reefs: S1, S2, S3, S4, S5, S7 and S8; Sargassum beds: S6. 

Table 1 Localities and survey sites in the North Pacific of Costa Rica. UVC: Underwater Visual Census; n: size of the sample. 

Locality Survey site ID Geographic coordinates Depth (m) UVC method n
Bahía Salinas Isla Bolaños 1 S1 11°03’02.65’’N 85°42’39.62’’W 9 Band transect 3
Isla Bolaños 2 S2 11°02’45.19’’N 85°42’32.78’’W 9 Timed swim 1
Golfo de Santa Elena La Mesa S3 11°01’37.13’’N 85°45’46.44’W 9 Band transect 6
Isla Loro 1 S4 11°00’10.14’’N 85°44’51.43’W 9 Band transect 6
Isla Loro 2 S5 11°00’03.14’’N 85°44’50.86’’W 13.5 Timed swim 1
Isla Muñecos 1 S6 10°58’53.37’’N 85°43’01.78’’W 9 Band transect 6
Isla Muñecos 2 S7 10°58’51.67’’N 85°43’00.82’’W 11 Timed swim 1
Isla David S8 10°57’23.76’’N 85°43’21.98’’W 6 Timed swim 1

ID: Code of the survey sites in the map.

Field methodology: In BSa we visited two sites, while in the GSE six. The marine ecosystems monitored were shallow (6 to 13.5 m depth) rocky reefs (boulders < 30 cm, small rocks < 30 cm - 1 m, big rocks 1 m - 3m, and rocks > 3m) and Sargassum beds (rocky substrate covered with 70% to 100% Sargassum) (Fig. 1, Table 1). Underwater Visual Census (UVC) methods using SCUBA were conducted at the eight sites during two sampling times (January and February 2013). In January, four sites were visited (S2, S5, S7 and S8). At each site the timed swim method, 50 to 60-minute, were done to register the invertebrates and conspicuous fish species. While in February, the other four sites (S1, S3, S4 and S6) were visited. Census followed standard band transect methodology described in previous studies (Alvarado et al., 2015; Alvarado et al., 2016). In each marine ecosystem, 10 m long transects, parallels to shore line and separated 10 m between them, were conducted by a single diver swimming to register the composition and abundance of invertebrates and conspicuous fishes. Three to six transects were performed at each site. Two runs were made along each transect. The first run was done while the line was being unrolled, recording all conspicuous fishes (> 5 cm total length) in the water column. We focused on conspicuous species rather than cryptobenthic species, or small fishes (< 5 cm in total length) that are behaviorally cryptic and are difficult to quantify by visual surveys due to their close association with the substratum (Allen, Bouvier & Jensen, 1992). In the second run, the diver recorded all invertebrates (>2.5 cm length) over the benthos and between crevices. For both UVC techniques, individuals under rocks were not registered to avoid altering the substrate. The categories were mollusks (gastropods and bivalves) and echinoderms (sea stars, sea urchins, sea cucumbers and brittle stars). Cryptic species (brittle stars) registered in transect bands method were not quantify to avoid an underestimation. For fishes, each band transect covered an area of 50 m2 (10 x 5 m) and for invertebrates an area of 20 m2 (10 x 2 m). Mean density (# ind m-2), relative abundance (# ind of one species/total # individuals), and frequency of occurrence (# transects observed/total # transects) were calculated for each species.

Fish species nomenclature and taxonomic designations followed Fricke, Eschemer & Van der Laan (2020) and Van der Laan, Fricke & Eschemeyer (2020), and for invertebrates the World Register of Marine Species (WoRMS Editorial Board, 2020). Fish species distribution were based on Froese & Pauly (2019) and Fricke et al. (2020), and categorized as follows: CT, Circumtropical; EP, Eastern Pacific; IP, Indo-Pacific; ETP, Eastern Tropical Pacific; WA, Western Atlantic. The IUCN Red List (IUCN 2020) was used to categorize the conservation status of each species recorded in this study as follows (in order of threat level): NE, not evaluated; DD, data deficient; LC, least concern. The categories mentioned correspond only to the species observed in this study.

Results

A total of 25 invertebrate species in 25 genera and 18 families were observed in BSa and GSE (Table 2) with the combined use of timed swim (n = 3) and band transects methods (n = 21). The most speciose invertebrate families were the Muricidae (3 spp.), Ophidiasteridae (2 spp.), Diadematidae (2 spp.), Toxoponeustidae (2 spp.), Cucumaridae (2 spp.) and Ophiocomidae (2 spp.). Hexaplex (2 spp.) was the most species rich genera, the rest of genera were represented by one specie. The highest number of species was observed in the rocky reef (23 spp.) while in Sargassum beds eight spp. (Table 2).

Table 2 Taxonomic list of invertebrates recorded in rocky reefs (RRs) and Sargassum beds (SBs) in the North Pacific of Costa Rica during January and February 2013, with the IUCN Red List classification. NE: Not Evaluated. 

Taxon Marine Ecosystem IUCN Red List
RRs SBs
Phylum Mollusca
Class Gastropoda
Family Conidae
Conus spp. Linnaeus, 1758 S1, S5 NE
Family Fasciolariidae
Opeatostoma pseudodon (Burrow, 1815) S3, S4, S8 NE
Family Muricidae
Babelomurex hindsi (Carpenter, 1857) S2 NE
Hexaplex erythrostomus (Swainson, 1831) S3, S4 NE
Hexaplex princeps (Broderip, 1833) S1, S2, S4, S5 S6 NE
Family Turbinellidae
Vasum caestus (Broderip, 1833) S6 NE
Family Plakobranchidae
Elysia diomedea (Bergh, 1894) S4, S7 S6 NE
Class Bivalvia
Family Margaritidae
Pinctada mazatlanica (Hanley, 1856) S1, S2, S5 NE
Family Spondylidae
Spondylus limbatus G. B. Sowerbey II, 1847 S1, S5 NE
Phylum Echinodermata
Class Asteroidea
Family Mithrodiidae
Mithrodia bradleyi Verrill, 1867 S5, S7 NE
Family Ophidiasteridae
Pharia pyramidata (Gray, 1840) S5 NE
Phataria unifascialis (Gray, 1840) S1, S3, S4, S5, S7 NE
Family Oreasteridae
Nidorellia armata (Gray, 1840) S3 NE
Class Echinoidea
Family Arbaciidae
Arbacia stellata (Blainville, 1825; ?Gmelin, 1791) S1, S2, S3, S8 NE
Family Diadematidae
Astropyga pulvinata (Lamarck, 1816) S7 S6 NE
Diadema mexicanum A. Agassiz, 1863 S1, S2, S3, S4, S5, S7, S8 S6 NE
Family Cidaridae
Eucidaris thouarsii (L. Agassiz & Desor, 1846) S1, S2, S3, S4, S5, S7, S8 NE
Family Toxopneustidae
Toxopneustes roseus (A. Agassiz, 1863) S1, S2, S3, S7, S8 S6 NE
Tripneustes depressus A. Agassiz, 1863 S2, S7 S6 NE
Class Holothuroidea
Family Cucumaridae
Cucumaria flamma Solis-Marin & Laguarda-Figueras, 1999 S2 NE
Pseudocnus spp. Panning, 1949 S2, S7 NE
Family Holothuriidae
Holothuria (Stauropora) fuscocinerea Jaeger, 1833 S2 NE
Class Ophiurodea
Family Ophiocomidae
Ophiocoma aethiops Lütken, 1859 S4, S5 NE
Ophiocomella alexandri (Lyman, 1860) S6 NE
Family Ophionereididae
Ophionereis annulata (Le Conte, 1851) S2 NE

Based on classification of the IUCN Red List, the conservation status of invertebrates species observed in BSa and GSE is unknow because those species have not been assessed by the IUCN (Table 2).

In the case of fishes, a total of 34 species in 30 genera and 15 families were observed (Table 3) with the combined use of timed swim (n = 3) and band transects methods (n = 21). The most speciose families were Serranidae (5 spp.), Pomacentridae (5 spp.), Labridae (5 spp.) and Tetraodontidae (4 spp.). Haemulon (3 spp.) and Halichoeres (3 spp.) were the most species rich genera. Two genera were represented by two species, and the rest by one species. The highest number of fish species was observed in the rocky reef (33 spp.), while in Sargassum beds only 10 species (Table 3).

Table 3 Taxonomic list of conspicuous fishes recorded in rocky reefs (RRs) and Sargassum beds (SBs) in the North Pacific of Costa Rica during January and February 2013, showing geographic distribution and IUCN Red List category. CT: Circumtropical; EP: Eastern Pacific; EP + IP: Eastern Pacific and Indo-Pacific; EP + WA: Eastern Pacific and Western Atlantic; ETP: Eastern Tropical Pacific. LC: Least Concern. 

Taxon Marine Ecosystem Distribution IUCN Red List
RRs SBs
Order Myliobatiformes
Family Urotrygonidae
Urobatis halleri (Cooper, 1863) S2, S5 S6 EP LC
Order Anguilliformes
Family Muraenidae
Muraena lentiginosa Jenyms, 1842 S4, S5, S7, S8 EP LC
Order Acanthuriformes
Family Pomacanthidae
Holacanthus passer Valenciennes, 1846 S2, S3, S4, S5, S8 EP LC
Pomacanthus zonipectus (Gill, 1862) S4, S8 EP LC
Family Chaetodontidae
Chaetodon humeralis Günther, 1860 S1, S2, S3, S4, S5, S7, S8 S6 EP LC
Johnrandallia nigrirostris (Gill, 1862) S3, S4, S5, S7, S8 EP LC
Order Tetraodontiformes
Family Diodontidae
Diodon holocanthus Linnaeus, 1758 S2, S3, S4, S5, S7, S8 S6 CT LC
Family Tetraodontidae
Arothron hispidus (Linnaeus, 1758) S5, S8 EP + IP LC
Arothron meleagris (Anonymus, 1798) S2, S5 EP + IP LC
Canthigaster punctatissima (Günther, 1870) S2, S5, S8 S6 ETP LC
Sphoeroides lobatus (Steindachner, 1870) S2 S6 EP LC
Family Balistidae
Balistes polylepis Steindachner, 1876 S5, S7, S8 S6 EP LC
Order Carangiformes
Family Carangidae
Caranx caballus Günther, 1868 S2, S3, S8 EP LC
Order Perciformes
Family Serranidae
Alphestes immaculatus Breder, 1936 S1, S2, S7 EP LC
Cephalopholis panamensis (Steindachner, 1876) S2, S3, S4, S5, S7 EP LC
Epinephelus labriformis (Jenyns, 1840) S1, S2, S3, S5, S7, S8 EP LC
Paranthias colonus (Valenciennes, 1846) S8 EP LC
Serranus psittacinus Valenciennes, 1846 S6 EP LC
Family Apogonidae
Apogon pacificus (Herre, 1935) S2, S5, S7, S8 EP LC
Family Lutjanidae
Lutjanus argentiventris (Peters, 1869) S1, S2, S3, S4, S5, S7, S8 EP LC
Family Haemulidae
Haemulon maculicauda (Gill, 1862) S2 EP LC
Haemulon scudderii Gill, 1862 S8 EP LC
Haemulon steindachneri (Jordan & Gilbert, 1882) S3, S4 S6 EP + WA LC
Family Pomacentridae
Abudefduf troschelii (Gill, 1862) S2, S4, S5, S7, S8 EP LC
Chromis atrilobata Gill, 1862 S3, S4, S5, S7, S8 EP LC
Microspathodon dorsalis (Gill, 1862) S3, S4, S5, S8 EP LC
Stegastes acapulcoensis (Fowler, 1944) S2, S3, S4 EP LC
Stegastes flavilatus (Gill, 1862) S2, S4, S5, S7, S8 S6 EP LC
Family Labridae
Bodianus diplotaenia (Gill, 1862) S2, S3, S4, S5, S7, S8 EP LC
Halichoeres chierchiae Di Caporiacco, 1948 S3, S5 EP LC
Halichoeres dispilus (Günther, 1864) S3, S4, S7, S8 S6 EP LC
Halichoeres nicholsi (Jordan & Gilbert, 1882) S5, S7 EP LC
Thalassoma lucasanum (Gill, 1862) S1, S3, S5, S7, S8 EP LC
Family Scorpaenidae
Scorpaena mystes Jordan & Starks, 1895 S7 EP LC

Three percent of species are restricted to the Eastern Tropical Pacific (Gulf of California to Peru), whereas 94% occur throughout the Eastern Pacific (California, USA to Chile). Only four species are found outside the Eastern Pacific, one of which is circumtropical (Diodon holocanthus), one is amphioceanic (Haemulon steindachneri) and the remaining two occur in the Indo-Pacific (Arothron hispidus, A. meleagris) (Table 3).

Classification by IUCN Red List status revealed that the fish observed in BSa and GSE are not species in threatened categories, only of least concern (Table 3).

We counted a total of 1 964 invertebrate individuals with the use of band transects (n = 21). The highest number of individuals was recorded in the rocky reef, 1 862 ind., while in Sargassum beds only 102 ind. In the rocky reef, Diadema mexicanum accounted for 81.3% of all individuals observed. D. mexicanum (100%) and Eucidaris thouarsii (93%) ranked highest in frequency of occurrence, and three species were observed between 40 to 50% of the transects (Toxopneustes roseus, Opeatostoma pseudodon and Phataria unifascialis). D. mexicanum has the highest mean density (5.04 ± 2.02 ind m-2) (Table 4). While in Sargassum beds, T. roseus accounted for 87.3% of all individuals observed and ranked highest in frequency of occurrence (83%) and in mean density (0.74 ± 0.75 ind m-2) (Table 4).

Table 4 List of invertebrates observed in rocky reefs and Sargassum beds in the North Pacific of Costa Rica organized by total abundance, relative abundance, frequency of occurrence, and mean density (± SD). 

Species Abundance (# inds) Relative abundance (%) Frequency (%) Mean Density (#ind m-2) SD
ROCKY REEFS
Diadema mexicanum 1513 81.3 1.00 5.04 2.02
Eucidaris thouarsii 192 10.3 0.93 0.64 0.57
Toxopneustes roseus 73 3.9 0.47 0.24 0.47
Opeatostoma pseudodon 43 2.3 0.47 0.14 0.24
Arbacia stellata 14 0.8 0.13 0.05 0.14
Phataria unifascialis 9 0.5 0.40 0.03 0.05
Hexaplex princeps 7 0.4 0.27 0.02 0.05
Hexaplex erythrostomus 3 0.2 0.13 0.01 0.03
Spondylus limbatus 3 0.2 0.07 0.01 0.04
Pinctada mazatlanica 2 0.1 0.07 <0.01 0.03
Conus sp. 1 0.1 0.07 <0.01 0.01
Elysia diomedea 1 0.1 0.07 <0.01 0.01
Nidorellia armata 1 0.1 0.07 <0.01 0.01
SARGASSUM BEDS
Toxopneustes roseus 89 87.3 0.83 0.74 0.75
Diadema mexicanum 4 3.9 0.50 0.03 0.04
Hexaplex princeps 3 2.9 0.33 0.03 0.04
Astropyga pulvinata 3 2.9 0.33 0.03 0.04
Vasum caestus 1 1.0 0.17 <0.01 0.02
Elysia diomedea 1 1.0 0.17 <0.01 0.02
Tripneustes depressus 1 1.0 0.17 <0.01 0.02

We counted a total of 622 fish individuals with the use of band transects (n = 21). The highest number of individuals was recorded in the rocky reef (539 ind.), while only 83 ind. in Sargassum beds. In the rocky reef, three species (Chromis atrilobata, Halichoeres dispilus and Stegastes acapulcoensis) accounting for 69.8% of all individuals observed. S. acapulcoensis (60%), Bodianus diplotaenia (60%) and Chaetodon humeralis (53%) ranked highest in frequency of occurrence, and five species were observed on 33% of transects. According to their mean density (Table 5), C. atrilobata (0.34 ± 0.52 ind m-2), H. dispilus (0.09 ± 0.21 ind m-2), S. acapulcoensis (0.07 ± 0.10 ind m-2) and H. steindachneri (0.05 ± 0.18 ind m-2) ranked highest. While in Sargassum beds, H. dispilus accounted for 77.1% of all individuals observed and ranked highest in frequency of occurrence (83%) and in mean density (0.21 ± 0.18 ind m-2) (Table 5).

Table 5 List of conspicuous fishes observed in rocky reefs and Sargassum beds in the North Pacific of Costa Rica organized by total abundance, relative abundance, frequency of occurrence, and mean density (± SD). 

Species Abundance (# inds) Relative abundance (%) Frequency (%) Mean density (#ind m-2) SD
ROCKY REEFS
Chromis atrilobata 255 47.3 0.33 0.34 0.52
Halichoeres dispilus 65 12.1 0.33 0.09 0.21
Stegastes acapulcoensis 56 10.4 0.60 0.07 0.10
Haemulon steindachneri 40 7.4 0.27 0.05 0.18
Thalassoma lucasanum 23 4.3 0.13 0.03 0.10
Bodianus diplotaenia 19 3.5 0.60 0.03 0.03
Chaetodon humeralis 14 2.6 0.53 0.02 0.02
Diodon holocanthus 13 2.4 0.33 0.02 0.04
Johnrandallia nigrirostris 10 1.9 0.27 0.01 0.03
Epinephelus labriformis 9 1.7 0.40 0.01 0.02
Abudefduf troschelii 8 1.5 0.33 0.01 0.02
Microspathodon dorsalis 8 1.5 0.33 0.01 0.02
Holacanthus passer 4 0.7 0.20 <0.01 0.01
Stegastes flavilatus 4 0.7 0.13 <0.01 0.02
Lutjanus argentiventris 3 0.6 0.20 <0.01 0.01
Cephalopholis panamensis 2 0.4 0.13 <0.01 0.01
Halichoeres chierchiae 2 0.4 0.13 <0.01 0.01
Muraena lentiginosa 1 0.2 0.07 <0.01 0.01
Pomacanthus zonipectus 1 0.2 0.07 <0.01 0.01
Caranx caballus 1 02 0.07 <0.01 0.01
Alphestes immaculatus 1 0.2 0.07 <0.01 0.01
SARGASSUM BEDS
Halichoeres dispilus 64 77.1 0.83 0.21 0.18
Chaetodon humeralis 4 4.8 0.33 0.01 0.02
Haemulon steindachneri 4 4.8 0.17 0.01 0.03
Serranus psittacinus 3 3.6 0.33 0.01 0.02
Sphoeroides lobatus 2 2.4 0.33 <0.01 0.01
Stegastes flavilatus 2 2.4 0.17 <0.01 0.02
Urobatis halleri 1 1.2 0.17 <0.01 0.01
Diodon holocanthus 1 1.2 0.17 <0.01 0.01
Canthigaster punctatissima 1 1.2 0.17 <0.01 0.01
Balistes polylepis 1 1.2 0.17 <0.01 0.01

Discussion

The North Pacific of Costa Rica is a region of great research interest due to its high biological diversity and ocean-atmosphere phenomena, and for its great national importance due to economic activities that take place there (Cortés, 2014; Cortés, 2016). The scientific information about species in marine ecosystems in an area is critical to understand, conserve and management the biodiversity in an integral way (Margules & Pressey, 2000). Although our records of invertebrates and fish species in BSa and GSE are typical of the biogeographic province of the Eastern Tropical Pacific (ETP) of Costa Rica (Alvarado, Chacón-Monge, Solís-Marín, Pineda-Enríquez, Caballero-Ochoa, Solano-Rivera & Romero-Chaves, 2017; Alvarado & Chiriboga, 2008; Alvarado & Fernández, 2005; Alvarado, Solís-Marín & Ahearn, 2010; Alvarado et al., 2015; Alvarado et al., 2018; Cordero-Umaña & Santidrián-Tomillo, 2020; Cortés, 2017; Dominici-Arosemena, Brugnoli-Olivera, Cortés-Núñez, Molina-Ureña & Quesada-Alpizar, 2006; Murase, Angulo, Miyazaki, Bussing & López, 2014;), the distribution geographic record of invertebrates and fishes observed in this study contribute to the knowledge of marine biodiversity in conservation priority areas (North Pacific of Costa Rica) and/or sites (marine sector of conservation areas) identified in the country (Alvarado et al., 2011; Cortés, 2012; Cortés, 2014; Cortés, 2017; SINAC-MINAET, 2008). Moreover, it contributes to the research efforts on the biodiversity of marine ecosystems of the Pacific shores of Costa Rica (Cortés, 2012; Cortés, 2016) that have received little (e.g., rocky reefs) (Cordero-Umaña & Santidrián-Tomillo, 2020; Dominici-Arosemena et al., 2006; Espinoza & Salas 2005) or scarce attention (e.g., Sargassum beds) compared with others, e.g., coral reefs (Alvarado & Chiriboga, 2008; Alvarado et al., 2015; Alvarado et al., 2018; Cortés, 1996 1997).

Our estimates of number of macroinvertebrates and conspicuous fish species would be larger with more spatial and temporal replication. Because estimates are sample-design dependent, comparisons to number of species at other sites where different sampling designs were used should be considered only suggestive. At the rocky reefs, for mollusks (gastropods and bivalves) and echinoderms (sea stars, sea urchins, sea cucumber and brittle stars) we recorded a lower number of species (23) than reported in rocky reefs in the Gulf of Papagayo (46 species) (Cordero-Umaña, & Santidrián-Tomillo, 2020) and in coral reefs (35 to 37 species) in the ETP of Costa Rica (Alvarado et al., 2015; Alvarado et al., 2018). On the other hand, the number of fish species (33) is less than reported previously (46 to 81 species) by Cordero-Umaña & Santidrián-Tomillo (2020), Dominici-Arosemena et al. (2006) and Espinoza & Salas (2005) in rocky reefs in the North Pacific of Costa Rica. Our lower number of species maybe due to our lower sampling compared to previous studies, our results suggest that the number of macroinvertebrates and fish species in rocky reef could be higher at BSa and GSE.

In the case of Sargassum beds, our study is the first biodiversity report for this marine ecosystem in the ETP of Costa Rica. With eight macroinvertebrates (mollusks and echinoderms groups) and ten fish species, the number of species recorded are lower than reported in Sargassum beds for these faunistic groups (44 to 73 species) from others latitudes, like the Gulf of California in México (Foster, McConnico, Lundsten, Wadsworth, Kimball, Brooks et al., 2007; Suárez-Castillo, 2008; Suárez-Castillo, 2014; Suárez-Castillo, Riosmena-Rodríguez, Hernández-Carmona, Méndez-Trejo, López-Vivas, Sánchez-Ortiz et al., 2013). Our results suggest that the number of invertebrates and fish species could be higher in GSE, this too possibly due lower sampling effort than used in other studies, and because we visit the Sargassum beds in February, before the algae reached their maximum length (102.0 cm in April) (Cortés et al., 2014). The mean length of S. liebmanni thallus observed was 7.67 cm (Alvin Suárez, personal observation). Sargassum species are considered foundation species because they harbor a vast diversity of species because of the habitat produced by the algae itself (Foster et al., 2007; Suárez-Castillo, 2008; Suárez-Castillo, 2014).

The variation of nearshore flora and fauna is often attributed to habitat structure and seasonal changes in environmental conditions (Aburto-Oropeza & Balart, 2001; Beukhof, Dencker, Pecuchet & Lindegren, 2019; Dominici-Arosemena & Wolff, 2006; Foster et al., 2007; McCourt, 1985; Palacios & Zapata, 2014; Scrosati, 2001). However, without physical descriptors of marine ecosystems and temporal replication and more quantitative, seasonal records of species composition in these marine ecosystems from this study, the consistency of these temporal patterns and their causes are largely unknow. The communities of invertebrate and fish of both marine ecosystems have different species composition. At the rocky reefs, the black sea urchin, D. mexicanum, and slate pencil urchin, E. thouarssii, were the most abundant invertebrates (1 513 and 192 ind., respectively) and frequently observed (100% and 93%, respectively). This result suggest that our estimate is reasonable for this marine ecosystem, where it has been recognized that these two species are the most dominant grazers in the ETP (Guzmán & Cortés, 1993). It has been reported that these two echinoids exert a strong influence on the community structure (Andrew, 1989; Glynn, Wellington & Birkeland, 1979; Lawrence, 1975; Underwood, 1992), so the values of mean density of D. mexicanum (5.04 ind m-2) and E. thouarsii (0.57 ind m-2) observed in this study are important to consider the periodical monitoring of community structure in rocky reefs in BSa and GSE. The mean density value recorded for D. mexicanum in this study are higher than was has been previously recorded in the northern Pacific region of Costa Rica (0.20 to 2.19 ind m-2) (Alvarado, Cortés & Reyes-Bonilla, 2012). The fish species composition observed in this study, high abundance of C. atrilobata (255 inds.) and serranids, pomacentrids, labrids and tetraodontids fishes with highest number of fish species, is similar to recorded for rocky reef in the North Pacific of Costa Rica (Cordero-Umaña & Santidrián-Tomillo, 2020; Dominici-Arosemena et al., 2006; Espinoza & Salas, 2005), indicating that the estimate for our survey sites is reasonable for this type of community.

Comparisons of communities of invertebrate and fish species in Sargassum beds from this study with the observed in other sites in the northern Pacific region of Costa Rica can’t be done, because our work represent the first report of this type for this marine ecosystem in the region. The composition of invertebrates and fish species recorded are similar to observed in Sargassum beds in the Gulf of California (Foster et al., 2007; Suárez-Castillo, 2008; Suárez-Castillo, 2014; Suárez-Castillo et al., 2013) suggesting that our observations are typical for this marine ecosystem. However, it was possible to observe invertebrate species (Vasum caestus, Astropyga pulvinata) that have not been previously recorded in Sargassum beds, and differences in the invertebrate and fish species frequently observed and with highest mean densities compared with Sargassum beds in other sites (Suárez-Castillo, 2008; Suárez-Castillo et al., 2013). Therefore, taxonomic and community structure studies of the fauna in Sargassum beds in the North Pacific of Costa Rica are necessary.

The original approach of this research by one of the authors (A. Suárez) was to monitor the community of invertebrate and fish species in Sargassum beds in the northern Pacific region of Costa Rica, where has been reported the absence of S. liebmannni since 2013, following a population outbreak of the black sea urchin D. mexicanum (Cortés et al., 2014). The substantial decrease or total disappearance of these seaweed beds by multiple factors (seasonal patterns related to temperature changes, introduction of alien species, biotic interactions, among others) has been reported in many coastal areas around the world (Aburto-Oropeza, Sala, Paredes, Mendoza & Ballesteros, 2007; Britton-Simmons, 2004; Haraguchi & Sekida, 2008; Rivera & Scrosati, 2006; Viejo, 1997; Xuan-Vy & Huu-Dai, 2011). The losses of these foundation species and the shift from algal dominated substrate to bare substrate, as observed on rocky reefs in our survey sites in BSa and GSE (Alvin Suárez, personal observation), may have implications in the decline of marine biodiversity associated with them. Therefore, more studies of marine biodiversity in Sargassum beds in the North Pacific of Costa Rica are necessary.

Our study further evidences the poorly and scarce knowledge of communities of invertebrates and fish species in rocky reefs and Sargassum beds in the North Pacific of Costa Rica, respectively. Which require considerably more survey and field work to locate such marine ecosystems, better characterize their marine biodiversity that occur in them and better understand of the community structure of fauna and the factors that determine them. Information that is required to support management decisions that are backed by sound scientific knowledge. These marine ecosystems deserve special consideration in efforts to conserve biodiversity.

Ethical statement: authors declare that they all agree with this publication and made significant contributions; that there is no conflict of interest of any kind; and that we followed all pertinent ethical and legal procedures and requirements. All financial sources are fully and clearly stated in the acknowledgements section. A signed document has been filed in the journal archives.

Acknowledgments

We dedicate this paper to the memory of Rafael Riosmena-Rodríguez (1966-2016), mentor, colleague and friend. The study was possible by CONACYT (México) who granted a Research Fellowship (Beca Mixta No. 34677) to Alvin Suárez during his Doctorate (Scholarship number 202159) for a research visit to the Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica. We thank the editor and two anonymous reviewers for their valuable comments and suggestions, which greatly improved the paper. A special thank to Eleazar Ruiz and Davis Morera for their assistance in the field, and Imelda Amador for support in the elaboration of the map.

References

Aburto-Oropeza, O., & Balart, E. F. (2001). Community structure of reef fish in several habitats of rocky reef in gulf of California. Marine Ecology, 22(4), 283-305. [ Links ]

Aburto-Oropeza, O., Sala, E., Paredes, G., Mendoza, A., & Ballesteros, E. (2007). Predictability of reef fish recruitment in a highly variable nursery habitat. Ecology, 88(9), 2220-2228. [ Links ]

Allen, L. G., Bouvier, L. S., & Jensen, R. E. (1992). Abundance, diversity, and seasonality of cryptic fishes and their contribution to a temperate reef fish assemblage off Santa Catalina Island, California. Bulletin of the Southern California Academy of Sciences, 91, 55-69. [ Links ]

Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-García, C., & Guzmán-Mora, A. G. (2015). Ecosistemas coralinos del Área de Conservación Osa, Costa Rica: estructura y necesidades de coservación. Revista de Biología Tropical, 63(Supplement 1), S219-S259. [ Links ]

Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-García, C., Guzmán-Mora, A. G., & Cortés, J. (2016). Ecosistemas coralinos del Parque Nacional Isla del Coco, Costa Rica: estructura y comparación 1987-2014. Revista de Biología Tropical , 64(Supplement 1), S153-S175. [ Links ]

Alvarado, J. J., Beita-Jiménez, A., Mena, S., Fernández-García, C., Cortés, J., Sánchez-Noguera, C., Jiménez, C., & Guzmán-Mora, A. G. (2018). Cuando la conservación no puede seguir el ritmo de desarrollo: estado de salud de los ecosistemas coralinos del Pacífico Norte de Costa Rica. Revista de Biología Tropical , 66(Supplement 1), S280-S308. [ Links ]

Alvarado, J. J., Chacón-Monge, J. L, Solís-Marín, F. A., Pineda-Enríquez, T., Caballero-Ochoa, A. A., Solano-Rivera, S., & Romero-Chaves, R. (2017). Equinodermos del Museo de Zoología de la Universidad de Costa Rica. Revista de Biología Tropical , 65(Supplement 1), S272-S287. [ Links ]

Alvarado, J. J., & Chriboga, Á. (2008). Distribución y abundancia de equinodermos en las aguas someras de la Isla del Coco, Costa Rica (Pacífico Oriental). Revista de Biología Tropical , 56(Supplement 2), S99-S111. [ Links ]

Alvarado, J. J., Cortés, J., & Reyes-Bonilla, H. (2012). Reconstruction of Diadema mexicanum bioerosion impact on three Costa Rican Pacific coral reefs. Revista de Biología Tropical , 62(Supplement 2), S121-S132. [ Links ]

Alvarado, J. J., & Fernández, C. (2005). Equinodermos del Parque Nacional Marino Ballenas, Pacífico, Costa Rica. Revista de Biología Tropical , 53(Supplement 3), S275-S284. [ Links ]

Alvarado, J. J., Herrera, B., Corrales, L., Asch, J., & Paaby, P. (2011). Identificación de las prioridades de conservación de la biodiversidad marina y costera en Costa Rica. Revista de Biología Tropical , 59(2), 829-842. [ Links ]

Alvarado, J. J., Solís-Marín, F. A., & Ahearn, C. G. (2010). Echinoderm (Echinodermata) diversity in the Pacific coast of Central America. Marine Biodiversity, 40, 45-56. [ Links ]

Andrew, N. L. (1989). Contrasting ecological implications of food limitation in sea urchins and herbivorous gastropods. Marine Ecology Progress Series, 51, 189-193. [ Links ]

Beukhof, E., Dencker, T. S., Pecuchet, L., & Lindegren, M. (2019). Spatio-temporal variation in marine fish traits reveals community-wide responses to environmental changes. Marine Ecology Progress Series, 610, 205-222. [ Links ]

Britton-Simmons, K. H. (2004). Direct and indirect effects of the introduced alga Sargasum muticum on bethic, subtidal communities of Washington State, USA. Marine Ecology Progress Series, 277, 61-78. [ Links ]

Cordero-Umaña, K. E., & Santidrián-Tomillo, P. (2020). Conservation status of fish and marine invertebrate of rocky reefs and sandy substrates in two unprotected bays of the Papagayo Gulf, Costa Rica. Revista de Biología Tropical , 68(4), 1311-1321. [ Links ]

Cortés, J. (1996 1997). Comunidades coralinas y arrecifes del Área de Conservación Guanacaste, Costa Rica. Revista de Biología Tropical , 44-45(3-1), 623-625. [ Links ]

Cortés, J. (2012). Historia de la investigación marino-costera en Bahía Culebra, Pacífico Norte, Guanacaste, Costa Rica. Revista de Biología Tropical , 60(Supplement 2), S19-S37. [ Links ]

Cortés, J. (2014). Compilación y análisis de las investigaciones científicas sobre temas marinos y atmosféricos en el Pacífico Norte de Costa Rica. Revista de Biología Tropical , 62(Supplement 4), S151-S184. [ Links ]

Cortés, J. (2016). The Pacific coastal and marine ecosystems. In M. Kappelle (Ed.), Costa Rican Ecosystems (pp. 97-138). Chicago, USA: The University of Chicago Press. [ Links ]

Cortés, J. (2017). Marine biodiversity baseline for Área de Conservación Guanacaste, Costa Rica: published records. ZooKeys, 652, 129-179. [ Links ]

Cortés, J. & Joyce, F. (2020). BioMar-ACG: A successful partnership to inventory and promulgate marine biodiversity. Biotropica, 52, 1104-1107. [ Links ]

Cortés, J., Samper-Villarreal, J., & Bernecker, A. (2014). Seasonal phenology of Sargassum liebmannii J. Agardh (Fucales, Heterokontophyta) in an upwelling area of the Eastern Tropical Pacific. Aquatic Botany, 119, 105-110. [ Links ]

Dexter, D. M. (1974). Sandy-beach fauna of the Pacific and Atlantic coasts of Costa Rica and Colombia. Revista de Biología Tropical , 22(1), 51-66. [ Links ]

Dominici-Arosemena, A., Brugnoli-Olivera, E., Cortés-Núñez, J., Molina-Ureña, H., & Quesada-Alpizar, M. (2006). Community structure of Eastern Pacific reef fishes (Gulf of Papagayo, Costa Rica). Tecnociencia, 7(2), 19-41. [ Links ]

Dominici-Arosemena, A., & Wolff, M. (2006). Reef fish community structure in the Tropical Eastern Pacific (Panamá): living on relatively stable rocky reef environment. Helgoland Marine Research, 60, 287-305. [ Links ]

Espinoza, M., & Salas, E. (2005). Estructura de las comunidades de pecess de arrecife en las Islas Catalinas y Playa Ocotal, Pacífico Norte de Costa Rica. Revista de Biología Tropical , 53(3-4), 523-536. [ Links ]

Foster, M. S., McConnico, L. M., Lundsten, L., Wadsworth, T., Kimball, T., Brooks, L. B., Medina-López, M., Riosmena-Rodríguez, R., Hernández-Carmona, G., Vásquez-Elizondo, R. M., Johnson, S., & Steller, D. L. (2007). Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Ciencias Marinas, 33(4), 367-384. [ Links ]

Fricke, R., Eschemer, W. N., & Van der Laan, R. (Eds), (2020). Eschmeyers’s Catalog of Fishes: genera, species, references. (Downloaded: October 16, 2020, http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). [ Links ]

Froese, R., & Pauly, D. (Eds), (2019). FishBase. World Wide Web electronic publication. (Downloaded: October 16, 2020, https://www.fishbase.de). [ Links ]

Glynn, P. W., Wellington, G. M., & Birkeland, C. (1979). Coral reef growth in the Galápagos: limitation by sea urchins. Science, 203, 47-49. [ Links ]

Guzmán, H. M., & Cortés, J. (1993). Los arrecifes coralinos del Pacífico Oriental Ecuatorial: revisión y perspectivas. Revista de Biología Tropical , 41, 535-557. [ Links ]

Haraguchi, H., & Sekida, S. (2008). Recent changes in the distribution of Sargassum species in Kochi, Japan. Kuroshio Science, 2/1, 41-46. [ Links ]

James, D. W. (1998). The Biology of Toxopneustes roseus in rhodolith beds in Baja California Sur, Mexico. (M.Sc. Thesis). San Jose State University, San José, California, USA. [ Links ]

IUCN. (2020). IUCN Red List of Threatened Species . Version 2013.2 (Downloaded: October 16, 2020, http://www.iucnredlist.org). [ Links ]

Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanography and Marine Biology, An Annual Review, 13, 213-286. [ Links ]

Madrigal-Castro, E., Cabrera-Peña, J., Monge-Esquivel, J., & Pérez-Acuña, F. (1984). Comparación entre dos poblaciones de Acanthina brevidentata (Gastropoda: Mollusca) en dos zonas rocosas de Playa Panamá, Guanacaste, Costa Rica. Revista de Biología Tropical , 32(1), 11-15. [ Links ]

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405, 243-253. [ Links ]

McCourt, R. M. (1985). Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. Journal of Experimental Marine Biology and Ecology, 74, 141-156. [ Links ]

Murase, A., Angulo, A., Miyazaki, Y., Bussing, A., & López, M. I. (2014). Marine and estuarine fish diversity in the inner Gulf of Nicoya, Pacific coast of Costa Rica, Central America). Check List, 10(6), 1401-1413. [ Links ]

Ortega, S. (1987). Habitat segregation and temporal variation in some tropical intertidal populations. Journal of Experimental Marine Biology and Ecology, 113, 247-265. [ Links ]

Palacios, M. del M., & Zapata, F. (2014). Fish community structure on coral habitats with contrasting architecture in the Tropical Eastern Pacific. Revista de Biología Tropical , 62(Supplement 1), S343-S357. [ Links ]

Rivera, M., & Scrosati, R. (2006). Population dynamics of Sargassum lapazeanum (Fucales, Phaeophyta) from the Gulf of California, México. Phycologia, 45(2), 178-189. [ Links ]

Rodríguez, A., Alfaro, E. J., & Cortés, J. (2021). Spatial and temporal dynamics of the hydrology at Salinas Bay, Costa Rica, Eastern Tropical Pacific. Revista de Biología Tropical , 69(Supplement 2), S105-S126. [ Links ]

Scrosati, R. (2001). Population dynamics of Caulerpa sertularoides (Chlorophyta: Bryopsidales) from Baja California, México, during El Niño and La Niña years. Journal of the Marine Biological Association of the United Kingdom, 81, 721-726. [ Links ]

Sibaja-Cordero, J. A., Camacho-García, Y. E., & Vargas-Castillo, R. (2014). Riqueza de especies de invertebrados en playas de arena y costas rocosas del Pacífico Norte de Costa Rica. Revista de Biología Tropical , 62(Supplement 4), S63-S84. [ Links ]

Sibaja-Cordero, J. A., & Cortés, J. (2008). Vertical zonation of rocky intertidal organisms in a seasonal upwelling area (Eastern Tropical Pacific). Revista de Biología Tropical , 56(Supplement 4), S91-S104. [ Links ]

SINAC. (2012). Memoria Annual Institucional SINAC-2011. Ministerio de Ambiente y Energía y Telecomunicaciones (MINAET), Sistema Nacional de Áreas de Conservación (SINAC). 72 pp. [ Links ]

SINAC-MINAET. (2008). Sistema Nacional de Áreas de Conservación (SINAC) de Ministerio del Ambiente, Energía y Telecomunicaciones (MINAET). GRUAS II: Propuesta de ordenamiento territorial para la conservación de la biodiversidad de Costa Rica. Volumen 3: Análisis de Vacíos en la Representatividad e integridad de la biodiversidad marina y costera. San José, CR. 60 pp. [ Links ]

Suárez-Castillo, A. N. (2008). Fauna asociada a mantos de Sargassum (Ochrophyta: Fucales) en El Sauzoso, Baja California Sur, México. (M.Sc. Thesis). Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México. [ Links ]

Suárez-Castillo, A. N. (2014). Bosques de Sargassum en el Golfo de California: estrategias para su manejo y conservación. (Ph.D. Thesis). Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México. [ Links ]

Suárez-Castillo, A. N., Riosmena-rodríguez, R., Hernández-Carmona, G., Méndez-Trejo, M. del C., López-Vivas, J. M., Sánchez-Ortiz, C., Lara-Uc, M., & Torre-Cosio, J. (2013). Biodiversity associated to Sargassum forest at the Gulf of California. In R. Riosmena-Rodríguez (Ed.), Invertebrates: Classification, Evolution and Biodiversity (pp. 205-223). New York, USA: Nova Science Publishers, Inc. [ Links ]

Underwood, A. J. (1992). Competition and marine plan-animal interactions. In D. M. Jhon, S. J. Hawkins, & J. H. Price (Eds.), Plant animal interactions in the marine benthos (pp. 443-476). Oxford: Clarendon Press. [ Links ]

UNESCO. (2020). UNESCO World Heritage List. (Downloaded October 16, 2020, https://whc.unesco.org/en/list/). [ Links ]

Van der Laan, R., Fricke, R., & Eschemer, W. N. (Eds.) (2020). Eschmeyers’s Catalog of Fishes: Classification. (Downloaded: October 16, 2020, https://www.calacademy.org/scientists/catalog-of-fishes-classification). [ Links ]

Viejo, R. M. (1997). The effects of colonization by Sargassum muticum on tidepool macroalgal assemblages. Journal of the Marine Biological Association of the United Kingdom, 77(22), 325-340. [ Links ]

Wehrtmann, I. S., & Cortés, J. (Eds), (2009). Marine Biodiversity of Costa Rica, Central America. Dordrecht: Springer + Business Media B.V. Text 538 pp., Species list in CD 500 pp. [ Links ]

WoRMS Editorial Board. (2020). World Register of Marine Species. (Downloaded: October 16, 2020, http://www.marinespecies.org). [ Links ]

Xuan-Vy, N., & Huu-Dai, N. (2011). Re-assessment of Sargassum beds at Hong-Kong Area, Nha Trang Bay, Vietnam. Publications of the Seto Marine Biological Laboratory, 41, 63-69. [ Links ]

Received: January 31, 2021; Revised: March 22, 2021; Accepted: May 04, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License