SciELO - Scientific Electronic Library Online

 
vol.63 número3Asimetría fluctuante en Apis mellifera (Hymenop-tera: Apidae) como bioindicador de ambientes antropo-génicosEstructura larval de Passalus gravelyi y dimorfismo sexual en larvas de Passalidae índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Revista de Biología Tropical

versión On-line ISSN 0034-7744versión impresa ISSN 0034-7744

Rev. biol. trop vol.63 no.3 San José jul./sep. 2015

 

Invertebrados terrestres

Water pollution and distribution of the black fly (Diptera: Simuliidae) in the Atlantic Forest, Brazil

Contaminación del agua y distribución de la mosca negra (Díptera: Simuliidae) en el bosque Atlán&tico, Brasil

Tatiana N Docile 2  

Ronaldo Figueiró 3  

Leonardo H Gil-Azevedo 5  

Jorge L Nessimian 1  

1Laboratòrio de Entomologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Edificio do Centro de Cièncias da Saùde,Bloco A, sala A1-107, Ilha do Fundao, Rio de Janeiro, RJ, Brasil - CEP: 21941-902; Caixa Postal: 68044; tatidocile@gmail.com; jnessimian@gmail.com

2Programa de Pós-Gradua9ao em Ecologia da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

3Laboratòrio de Biotecnologia Ambiental, Centro Universitario Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil; ronaldofigueiro@gmail.com

4Centro Universitario de Volta Redonda (UniFOA), Volta Redonda, Brazil

5Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro, Brazil; lhgazevedo@gmail.com

Abstract:

Black flies have medical importance because some species are vectors of the Onchocerciasis and Mansonelosis, nevertheless, their ecology and potential use as bioindicators is still poorly studied in the Neotropical Region. In Brazil, bioindicators use is strongly focused in a multimetrical ecological index approach; this way, we investigated the black fly spatial distribution, in relation to abiotic factors correlated to water quality, to provide baseline information for their utilization as standalone indicators of lotic systems integrity. We have tested the hypothesis that environmental changes related to urbanization, lead to decreased abundance and loss in the number of species of the black fly fauna. The sampling was conducted in 10 urban and 10 preserved streams during the dry season (August-September) of 2012, in the mountainous region of Teresópolis, State of Rio de Janeiro, Brazil. The streams were characterized for their environmental integrity conditions and physico-chemical properties of water. In each stream, five different rapid points were sampled in a section of 50 meters, 10 meters apart from each other. The black flies were sampled with a kick-net sampler on rocky substrates. The material was separated and the larvae were sorted in morphotypes, and later, the final instar specimens were dissected and identified with the help of taxonomical literature at species level. A total abundance of 488 larvae from nine species were collected, 5 (1.02 %) in extremely impacted streams, 470 (96.31 %) in intermediate streams and 13 (2.66 %) in preserved streams. The visual evaluation (HII) differed in rela&tion to the water physico-chemical evaluation, in which more variation in the characterization of the sampling sites was observed. In Canonical Correspondence Analysis Simulium subpallidum, S. inscrustatum and S. pertinax were significantly associated with intermediate values of most of the variables, and then to intermediate impacted sites. On the other hand, Lutzsimulium hirticosta, S. subnigrum and Simulium sp. A were associated to low values of chemical variables, and then to more preserved sites. Most studies on the bioindicator potential of Simuliidae have suggested an approach to agricultural impacts, while our results, on the other hand, showed that Simuliidae species were present in streams with intermediate urban pollution impacts, but absent in heavily impacted sites. Thus, our data suggested that some species are associated to more pristine breeding sites, such as L. hirticosta and Simulium sp. A, while others may be good bioindicators of moderately impacted streams, such as S. pertinax, S. subnigrum and S. subpallidum.

Key words: black flies; community ecology; environmental characterization; impacted streams, tropical forest

Resumen:

Aunque las moscas negras tienen importancia médica debido a que algunas de sus especies son vectores de la Oncocercosis y Mansonelosis, su ecología y su potencial como bioindicadores es aún poco estudiado en la Región Neotropical. En Brasil el uso de bioindicadores se centra principalmente en un índice ecológico multimétrico, en este estudio investigamos la distribución espacial de las moscas negras y su relación con los factores abióticos, para su utilización como indicadores de la integridad de los sis&temas lóticos. En este sentido, hemos probado la hipótesis de que los cambios ambientales relacionados con la urba&nización conducen a la disminución de la abundancia y la pérdida de especies de la mosca negra. El muestreo se llevó a cabo en la región montañosa del Estado de Río de Janei&ro, Brasil, en 10 zonas urbanas y 10 arroyos conservados durante la estación seca (agosto-septiembre) de 2012. Los arroyos se caracterizaron por sus condiciones de integridad del ambiente y las propiedades físico-químicas de agua. Las moscas negras se muestrearon en sustratos rocosos con un kick-net sampler. El material se separó y las larvas se ordenaron por morfotipos y más tarde los especímenes en último estadio se disectaron e identificaron con la ayuda de la literatura taxonómica a nivel de especie. Una abundancia total de 488 larvas de nueve especies fueron recolectadas, 5 (1.02 %) en arroyos muy afectados, 470 (96.31 %) en intermedios y 13 (2.66 %) en conservados. La evaluación visual (HII) difiere de la físico-química del agua, en la que se observó una mayor variación. En el Análisis Correspon&dencia Canónica, Simulium subpallidum, S. inscrustatum y S. pertinax estaban asociadas significativamente con sitios de impacto intermedio, para la mayoría de las variables. Por otro lado, Lutzsimulium hirticosta, S. subnigrum y Simulium sp. A se asocian con valores bajos de las varia&bles químicas, relacionado a sitios más conservados. La mayoría de los estudios sobre el potencial bioindicador de Simuliidae tienden a enfocarse en los impactos agrícolas, mientras que nuestros resultados, por otro lado, sugieren que las especies de Simuliidae están presentes en arroyos con impactos intermedios de contaminación urbana, pero ausentes en los sitios fuertemente afectados. Por lo tanto, nuestros datos sugieren que algunas especies tales como L. hirticosta y Simulium sp. A están asociadas a lugares de reproducción más prístinos, mientras que otras pueden ser bioindicadores de arroyos moderadamente afectados, como S. pertinax, S. subnigrum y S. subpallidum.

Palabras-clave: moscas negras; ecología comunitaria; caracterización ambiental; ríos impactados; bosque tropical

Aquatic ecosystems, such as streams, lakes, rivers and reservoirs have been disturbed and significantly affected by increasing anthropic activities (McAllister, Hamilton, & Harvey, 1997). The most serious problems are seen in urban areas where watercourses receive input of industrial and domestic sewages, sediment and trash, changes such as plumbing and waterproofing of soils, resulting in the modification of its physical, chemical and biological structure (Shepp & Cummins, 1997). There is a change of abiotic environment due to various impacts suffered, and consequently, there is a decrease in water quality, loss of aquatic biodiversity and changes in the dynamics of biological communities (Goulart & Callisto, 2003; Gutiérrez-Fonseca & Lorion, 2014; Shepp & Cummins, 1997).

Different organisms are used in evaluations of environmental impacts on aquatic ecosystems, including macroinvertebrates (especially insects): these may be viable for laboratory studies when their ecological characteristics are known, and can respond more quickly to changes in the environment, through changes in the community structure (Callisto, Moretti, & Goulart, 2001; Goulart & Callisto, 2003; Reece & Richardson, 1999). The pattern of distribution of aquatic organisms is the result of these biotic and abiotic interactions, the habitat (substrate, flow, turbulence, pH, among others) and food availability (Resh & Rosen&berg, 1984). Communities respond to different environmental factors in different ways, including changes in the composition, structure and functional characteristics of the species (Fenoglio, Badino, & Bona, 2002; Heino, Muotka, & Paavola, 2003).

Black flies are among the most abundant components of benthos in lotic systems. This family comprises 2 151 valid species (Adler & Crosskey, 2014). Simuliidae has a worldwide distribution, which is locally limited by the existence of proper lotic microhabitats for their immatures (Eymann, 1993), trophic relationships (Mcintosh & Townsend, 1996), as well as competition (Colbo & Porter, 1979) and food availability (Hart, 1986).

Simuliidae is an important family as some of its species are vectors of the Onchocerciasis and Mansonelosis (Cerqueira, 1959; Shelley, Hernández, Maia-Herzog, Dias, & Garritano, 2010). In addition, bites of females cause allergies to humans and certain animals, causing losses in agriculture and tourism (Couceiro, Hamada, Sagot, & Pepinelli, 2014). Thus, this family has an economic and medical importance (Shelley et al., 2010).

Simullidae ecology and their potential as bioindicators are still poorly studied in the Neotropical Region (Figueirö & Gil-Azevedo, 2010; Travi & Vargas, 1978). Particularly in Brazil, most of the few recent studies on behav&ior of black fly immatures is restricted to the Amazon (e.g. Hamada, McCreadie, & Adler, 2002), Mata Atläntica biomes (e.g.: Bertazo & Figueirö, 2012; Coppo & Lopes, 2010; Couceiro et al., 2014; Figueirö, Araüjo-Coutin-ho, Gil-Azevedo, Nascimento, & Monteiro, 2006; Figueirö, Nascimento, Gil-Azevedo, Maia-Herzog, & Monteiro, 2008; Pepinelli, Trivinho-Strixino, & Hamada, 2005;), and just a few in the Cerrado (Figueirö et al. 2015; Figueirö, Gil-Azvedo, Maia-Herzog, & Monteiro, 2012; Figueirö, Maia-Herzog, Gil-Aze-vedo, Monteiro, 2014; Landeiro, Pepinelli, & Hamada, 2009).

Even though the bioindicator potential of black flies is a concept well established in the literature, only a few recent studies deal with the actual effect of habitat quality in the dis&tribution of black fly larvae in the Neotropical region (e.g.: Strieder, Ronchi, Stenert, Scherer, & Neiss, 2006) and Paleartic regions (e.g.: Illesova, Beracko, Krno, & Halgos, 2010; Kazanci & Ertunc, 2010).

The use of bioindicators in Brazil is strongly focused in a multimetrical ecological index approach (Docile & Figueirö, 2013). In the present study we have investigated the black fly spatial distribution in relation to abiotic factors correlated to water quality, in order to provide data that may allow its use as a standalone indicator of lotic systems integrity. In this sense, we have tested the hypothesis that environmental changes, related to urbanization, lead to decreased abundance and loss of the black fly fauna number of species.

Materials and Methods

Study area and sampling sites: The study was conducted in the River Watershed Paque-quer located in the municipality of Teresöpolis, mountainous region of the State of Rio de Janeiro, (coordinates 22°28'35" S - 43°03'19" W - 22°12'56" S - 42°55'00" W), and covering an area of 12 904 km2. In this region, the rainy season occurs from November to February (more than 250 mm/month), and the dry season from June to September (less than 100 mm/ month). The natural vegetation in the region is part of the Atlantic Forest biome. Population profile is predominantly urban (96.3 %) and is concentrated in the district headquarters, Teresopolis. Twenty streams of first and second order were chosen for sampling: 10 outside the urban perimeter and other 10 inside the urban perimeter of Teresopolis (Table 1). The sampling was conducted during the dry season, August and September 2012.

Abiotic factors: The sampling sites were classified in relation to their integrity degree using a visual protocol based on Petersen (1992) and Barbour, Gerritsen, Snyder and Stribling (1999) to produce a habitat integrity index (HII) as performed in Nessimian et al. (2008). This protocol is composed of 31 items describing stream environmental condition in relation to land use, riparian zone, streambed characteristics, and stream channel morphology, aquatic vegetation, presence of domestic or industrial effluents and other urban-related characteristics. Each item is composed of five alternatives ordered in a way to represent a degree of integrity. The HII value varies from zero to one, the closer the value is to 1, the more integrate the system is.

Table 1: Location, altitude, width, order, value of Habitat Integrity Index and characterization of selected for collection in Teresôpolis, RJ streams 

Fifteen physical and chemical water vari&ables were measured. At the time of sampling, water temperature and dissolved oxygen (mg O2/L) were measured using a portable oxym-eter (YSI-model F-1550). A sample of water (2 L) was removed from each stream and transported at 12 °C, to posterior laboratory analyses of the following variables: turbidity (HI 93414); electrical conductivity and salinity (YSI-model EC 300 condutivimeter); pH and alcalinity (Camourze, 1994); total phosphorous, dissolved phosphorous and orthophosphate through the method proposed by Mackereth, Heron and Talling (1978); ammonia (Bower & Holm-Hansen, 1980); total nitrogen and nitrate through the Kejdahl method described in Mackereth et al. (1978); chlorophyll a in the watercolumn and periphyton through the method described in Nusch and Palme (1975). The negative values and zero means that the abiotic variable was not detected in the analysis. These analyses were made in the Laboratorio de Limnologia, Instituto de Biologia, UFRJ.

Larvae sampling and identification: The black flies were sampled on rocky substrates in riffle /rapids in a section of 50 m along the stream with the help of a kick-net sampler (area of 30x30 cm) and 500 mesh. The samples were placed in plastic bags with 80 % ethanol. The material was separated and the larvae were sorted in morphotypes and later the final instar specimens were identified to species level with the help of taxonomical literature (Coscaron & Coscaron-Arias, 2007; Hamada & Adler, 2001), and by using direct comparison with the material deposited at Museu Nacional Uni-versidade Federal of Rio de Janeiro (MNRJ), where the specimens are currently deposited.

The Pearson correlation coefficient was calculated between all measured variables. For pairs of variables with coefficient above 80 % one of them was removed from subsequent analyzes. The sampling sites were analyzed in relation to their ecological distances using Cluster Analyses (Bray-Curtis distance) using PAST (Hammer, Harper, & Ryan, 2007) sta&tistical package. We removed the sites where there was no presence of Simuliidae to contribute to a higher resolution graphic in the biotic cluster. The relations of the abiotic factors with the spatial distribution of black fly larvae were investigated after log transformation and down-weight of rare species through Canonical Correspondence Analysis using 5000 Monte-Carlo permutations in the CANOCO 4.5 statistical package (Ter Braak & Smilauer, 2002). Subsequently, we performed multiple regressions analysis to investigate if there was a significant relationship of the sampled data and the classification of streams provided by the HII.

Results

The sites 7, 8, 9 and 10 (Table 1) showed the lowest scores of HII (0.4), indicating that these are the extremely impacted streams, while sites 11 to 20 (Table 1) scored over 0.9, being the most preserved. The variables elec&trical conductivity, salinity and nitrate showed Pearson's correlation coefficient above 80 % with turbidity (86 %) and total nitrogen (93 %), and were excluded from subsequent analyzes. The visual evaluation (HII) differed in relation to the water physico-chemical evaluation, in which more variation in the characterization of the sampling sites was observed (Table 2). The Cluster Analysis applied to the biotic data (species abundances) grouped sites 8 and 10, impacted streams that showed few black fly individuals. Sites 1 to 5, 9 and 11, considered intermediate, and with great abundance of black flies formed another group, and sites 12 to 15 and 17 (the later three considered preserved), with few individuals formed one group. Black flies were absent in sites which are not grouped in the analysis (Fig. 1a). The abiotic values showed streams 14 to 20 were classified as preserved, while streams 1 to 5, 9 and 11 to 13 were classified as intermediate, and streams 6, 7, 8 and 10 were classified as impacted (Table 2), but the Cluster Analysis grouped 6, 7, 8 and 10, and another group with sites 17, 18, 19 and 20 (Fig. 1b).

A total abundance of 488 larvae were collected, 5 (1.02 %) in extremely impacted streams, 470 (96.31 %) in intermediate streams and 13 (2.66 %) in preserved streams, distrib&uted in eight species: Lutzsimulium hirticosta Lutz, 1909. S. (Chirostilbia) subpallidum Lutz, 1910, S. (Chirostilbia) pertinax Kollar, 1832, S. (Inaequalium) subnigrum Lutz s.l., 1910, S. (Psaroniocompsa) incrustatum s.l. Lutz 1910, Simulium sp. A, Simulium sp. B, Simulium (Trichodagmia) and Enderlein 1934. In the extremely impacted streams, only three indi&viduals of S. pertinax and two S. incrustatum s.l. were found. However, intermediate streams presented all previously listed species, except for Simulium sp. B. The most abundant was S. pertinax with 235 individuals, followed by S. incrustatum, with 113 individuals. On the other hand, abundance and species richness were smaller in preserved streams, where S. subnigrum s.l., S. incrustatum s.l. , Simulium sp. A, Simulium sp. B and Lutzsimulium hirticosta were present. Simuliidae were not found in sites 6, 7, 15, 16, 18 and 19.

Fig. 1: Cluster Analysis (Bray-curtis distance) based on variables of 20 streams in Paquequer river watershed, Teresopolis-RJ (A) biotic; (B) abiotic. 

Table 2: Values of physicochemical variables measured at each of the points studied in 20 tributaries of the Rio Paquequer, Teresópolis, Rio de Janeiro, Brazil 

Rj.T = Temperature, DO = Dissolved Oxygen, Tur = Turbidity, TP = Total Phosphorus, DP= Dissolved Phosphorus; AM = Ammonia; ORT = Orthophosphate; ALC = Alkalinity, TN = Total Nitrogen, CLO= Chlorophyll (water column); CLOS = Chlorophyll (substrate).

The Canonical Correspondence Analysis (Fig. 2) showed that S. subpallidum and S. pertinax were positively associated to turbidity, total phosphorus and pH, suggesting associa&tion to moderately impacted sites. On the other hand, L. hirticosta and Simulium sp. A were negatively associated to phosphorus, dissolved phosphorus, turbidity, total nitrogen, alkalinity, chlophylla a, orthophosphate, thus indicating association to more preserved sites while S. subnigrum and Simulium sp. B did not show a clear distributional pattern. S. incrustatum seemed to be generalistic. The two axes of the CCA explained 0.798 and 0.623 respectively. The linear regressions of the HII scores with species richness, diversity and abundance were not significant, except for the abundance of S. pertinax (p = 0.01).

Discussion

Several studies have shown that the pres&ence and abundance of black flies are influenced by various environmental variables, which are directly related to anthropogenic pressures, such as loss of riparian vegetation or frequent disturbances (Feld, Kiel, & Lautenschlager, 2002; Rühm, 1998; Timm, 1995; Zhang, Malqvist, & Englund, 1998). Furthermore, black flies are known to react to physical and chemical degradations, including acidification and organic pollution (Seitz, 1992). Black fly larvae are able to live in conditions of anoxia for several hours, and are filter-feeding organisms, feeding on organic matter, which favors their adaptation to different environments.

Fig.: 2 Canonical Correspondence Analysis (CCA) of species distribution in relation to abiotic variables. Species: S. subn = Simulium subnigrum, sp. A = Simulium sp. A, sp. B = Simulium sp. B, L. hirt = Lutzsimulium histicosta, S subp = Simulium subpallidum, S. incr = Simulium incrustatum, S. pert = Simulium pertinax. Temp = Temperature, DO = Dissolved Oxygen, Tur = Turbidity, CLOS = Chlorophyll a (substrate), TP = Total Phosphorus, TN = Total Nitrogen, ORT = Ortophosphato, ALC = Alkalinity, AM = Ammonia, DP = Dissolved Phosphorus, CLO = Chlorophyll a (water column), HII = Habitat Integrity Index. 

Another explanation for the results would be the intermediate disturbance hypothesis (Connell, 1978). The intermediate sites were submitted to constant sewage discharges, which seem to generate Figueirö et. al (2014) a mod&erate mortality in the species, which is not high enough to the point of them fail to recover, but at the same time, is sufficient to limit growth of more competitive species, which could exclude less competitive species. In this study, urban streams with intermediate disturbance had greater abundance of blackflies. If the low species richness at low intensities of disturbance is due to competitive exclusion, as proposed by this hypothesis, there is something that remains to be tested. stated that even though the IDH has recently met criticism in the literature (Fox, 2013), many authors still defend its validity stating that although it is prone to misinterpretations, resulting from the use of different diversity measures (Sheil & Burslem, 2013), it is still robust when used with species rich&ness (Svensson, Lindegarth, Jonsson, & Pavia, 2012), as in the present study.

The CCA showed that S. subpallidum, S. incrustatum s.l and S. pertinax are positively associated to most variables measured, but the cluster analysis showed their association with intermediate impacts, rather than in more severely impacted sites. Paiva (2000), developed studies in the state of Paraná to observe the survival of some species of black flies under laboratory conditions, with the addition of organic matter in water. His results indicate that organic pollution may increase the species richness of Simuliidae. Additionally, the study of Zhang et al. (1998) reported that certain situations (natural or man-made) can cause an increase in the diversity of the group. The authors argued that communities of black flies can be indicative of disturbed sites, such as, floods, droughts, storms. The Simuliidae are known to deal with perturbations in rivers than many of its competitors and predators (Hemphill & Cooper, 1983).

The relationship of the number of individuals of S. pertinax points to the prevalence of this species in locations classified as interme&amp;diate streams (p < 0.05). This association was also found in another study with S. pertinax in streams impacted in countryside (Strieder et al., 2006). It is considered an anthropophilic species, on the Northern coast of Sao Paulo and Southern Brazil S. pertinax is the main species that exerts a role of insect nuisance due to aller&amp;gic reactions caused by bites influencing well-being of the population as a whole (Strieder &amp; Corseuil, 1992). Therefore, increasing the number of biological control programs to miti&amp;gate these impacts (Araújo-Coutinho, 1995; Regis, Silva, Alice &amp; Santos, 2000). However, these organisms are important to the ecosystem because they represent a bond of connection between particulate matter and predators in the food chain (Malmqvist, 1994).

Results obtained by Strieder et al. (2006) in Southern Brazil, showed higher incidence of S. pertinax in streams impacted by high con&amp;centrations of nitrite and nitrate in agricultural landscape. Couceiro et al. (2014) also studied the distribution of blackflies in locations with disturbance caused by human modification of the landscape (agricultural practices).

Most studies on the bioindicator potential of Simuliidae have tended to approach agricultural impacts, while our results, on the other hand, suggested that these species are present in intermediate urban pollution impacted streams, but absent in heavily impacted sites. Thus, our data suggested that some species such as L. hirticosta and sp. A, are associated to more pristine breeding sites, others, may be bioindicators of moderately impacted streams, such as S. pertinax, S. subnigrum and S. subpallidum.

Acknowledgments

To Larissa Correa and Clayton Portela (Laboratòrio de Entomologia, IB, UFRJ) for their help in collecting field, Mario Ribeiro and Claudio Marinho (Laboratòrio de Limnologia, IB, UFRJ) for their help with water analy&amp;ses. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Instituto Chico Mendes de Conservalo da Biodiversidade (ICMBio) and INEA for issu&amp;ing collecting permits. Conselho Nacional de Desenvolvimento Científico e Tecnològico (CNPq) and Fundacào Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) provided financial support by grants and fellowships.

REFERENCES

Adler, P. H., &amp; Crosskey, R. W. (2014). World blac&amp;kflies (Diptera: Simuliidae): a comprehensive revi&amp;sion of the taxonomic and geographical inventory (2014) Retrieved from: www.clemson.edu/cafls/departments/esps/biomia/pdfs/blackflyinventory.pdf. [ Links ]

Araújo-Coutinho, C. J. P. C. (1995). Biological control against simuliids in the State of Sào Paulo, Brazil. Memórias do Instituto Oswaldo Cruz 90131-133. [ Links ]

Barbour, M. T., Gerritsen, J., Snyder, B. D., &amp; Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish Washington, D.C.: Environmental Protection Agency, Office of Water. [ Links ]

Bertazo, K., &amp; Figueirò, R. (2012). Spatial distribution of black fly (Diptera: Simuliidae) immatures in a water current velocity gradient in Aracruz/ES, Brazil. Revista Universidade Rural 3291-101. [ Links ]

Bower, C. E., &amp; Holm-Hansen, T. (1980). A salicylate-hypochlorite method for determining ammonia in seawater. Canadian Journal of Fischeries and Aqua&amp;tic Sciences 37794-798. [ Links ]

Callisto, M., Moretti, M., &amp; Goulart, M. (2001). Macroinvertebrados bentónicos como ferramenta para avaliar a saúde de riachos. Revista Brasileira de Recursos Hídricos 671-82. [ Links ]

Camourze, J. P. (1994). O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estu&amp;do e análises Sào Paulo: Editora Edgard, Blucher/ Fapesp. [ Links ]

Cerqueira, N. L. (1959). Sobre a transmissào da Man-sonella Ozzardi. Jornal Brasileiro de Medicina 5885-914. [ Links ]

Colbo, M. H., &amp; Porter, G. N. (1979). Effects of the food supply on the life history of Simuliidae (Diptera). Canadian Journal of Zoology 57301-306. [ Links ]

Connell, J. H. (1978). Diversity of tropical rainforests and coral reefs. Science 1991304-1310. [ Links ]

Coppo, T. L., &amp; Lopes, J. (2010). Diversidade de Simulii-dae (Diptera: Nematocera) de très cursos d' água no parque ecològico da Klabin S.A. - Telemaco Borba, Estado do Paraná. Semina: Ciencias Biológicas e da Saúde 313-14. [ Links ]

Coscaròn S. , &amp; Coscaròn-Arias, C. L. (2007). Neotropical Simuliidae (Diptera: Insecta). In J. Adis, J. R. Arias, G. Rueda-Delgado, K. M. Wantzen (Eds.), Aquatic biodiversity in Latin America (pp. 685). Sofia, Bul&amp;garia: Pensoft Publishers. [ Links ]

Couceiro, S., Hamada, N., Sagot, L., e Pepinelli, M. (2014). Black-fly assemblage distribution patterns in streams in disturbedareas in southern Brazil. Acta Tropica 14026-33. [ Links ]

Docile, T. N., e Figueiró, R. (2013). Histórico e perspecti&amp;vas da utilizaçao de macroinvertebrados no monitora-mento biológico de ecossistemas aquáticos no brasil. Acta Scientiae et Technicae 1 , 31-44. [ Links ]

Eymann, M. (1993). Some boundary layer characteristics of microhabitats occupied by larval black flies (Dip&amp;tera: Simuliidae). Hydrobiologia 25957-67. [ Links ]

Feld, C. K., Kiel, E., e Lautenschlager, M. (2002). The indication of morphological degradation of streams and rivers using Simuliidae. Limnologica 32273-288. [ Links ]

Fenoglio, S., Badino, G., e Bona, F. (2002). Benthic macroinvertebrate communities as indicators of river environment quality: an experience in Nicaragua. Revista Biología Tropical 501125-1132. [ Links ]

Figueiró, R., Araújo-Coutinho, C. J. P. C., Gil-Azevedo, L. H., Nascimento, E. S., e Monteiro, R. F. (2006). Spatial and temporal distribution of blackflies (Dip&amp;tera: Simuliidae) in the Itatiaia National Park, Brazil. Neotropical Entomology 35542-550. [ Links ]

Figueiró, R., Calvet, A., Gil-Azevedo, L. H., Docile, T. N., Monteiro, R. F., Maia-Herzog, M. (2015). Evidence of phenotypic plasticity of larvae of Simulium subpa-llidum Lutz in different streams from the Brazilian Cerrado. Revista Brasileira de Entomologia 5930-33. [ Links ]

Figueiró, R., Gil-Azevedo, L. H. (2010). The role of the Neotropical blackflies (Diptera: Simuliidae) as vectors of the onchocerciasis: a short overview of the ecology behind the disease. Oecologia Australis 14745-755. [ Links ]

Figueiró, R., Gil-Azevedo, L. H., Maia-Herzog, M., e Monteiro, R. F. (2012) Diversity and microdistribu&amp;tion of black fly (Diptera: Simuliidae) assemblages in the tropical savanna streams of the Brazilian cerrado. Memórias do Instituto Oswaldo Cruz 107362-369. [ Links ]

Figueiró, R., Nascimento, E. S., Gil-Azevedo, L. H., Maia-Herzog, M., e Monteiro, R. F. (2008). Local distri&amp;bution of blackfly (Diptera: Simuliidae) larvae in two adjacent streams: the role of water current velocity in the diversity of blackfly larvae. Revista Brasileira de Entomologia 52452-454. [ Links ]

Figueiró, R., Maia-Herzog, M., Gil-Azevedo, L. H., e Monteiro, R. F. (2014) Seasonal variation in black fly (Diptera: Simuliidae) taxocenoses from the Brazilian Savannah (Tocantins, Brasil). Journal of Vector Eco&amp;logy 39321-327. [ Links ]

Fox, J. W. (2013). The intermediate disturbance hypothesis should be abandoned. Trends in Ecology &amp; Evolution 2886-92. [ Links ]

Goulart, M. D., &amp; Callisto, M. (2003). Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. Revista FAPAM 278-85. [ Links ]

Gutiérrez-Fonseca, P. E., &amp; Lorion, C. M. (2014). Applica&amp;tion of the BMWP-Costa Rica biotic index in aquatic biomonitoring: sensitivity to collection method and sampling intensity. Revista de Biología Tropical 62275-289. [ Links ]

Hamada, N., &amp; Adler, P. H. (2001). Bionomia e chave para imaturos e adultos de Simulium (Diptera: Simuliidae) na Amazónia central, Brasil. Acta Amazonica 31 , 109-132. [ Links ]

Hamada, N., McCreadie, J. W., &amp; Adler, P. H. (2 002). Species richness and spatial distribution of black flies (Diptera: Simuliidae) in streams of central Amazonia, Brazil. Freshwater Biology 4731-40. [ Links ]

Hammer, O., Harper, D. A. T., &amp; Ryan, P. D. (2007). PAST Palaeontological Statistics. Retrieved from: http://www.uv.es/~pardomv/pe/2001_1/past/pastprog/past.pdfLinks ]

Hart, D. D. (1986). The adaptive significance of territo-riality in filter-feeding larval black flies (Diptera: Simuliidae). Oikos 4688-92. [ Links ]

Heino, J., Muotka, T., &amp; Paavola, R. (2003). Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Eco&amp;logy 72425-434. [ Links ]

Hemphill, N., &amp; Cooper, S. D. (1983). The effect of physi&amp;cal disturbance of two filter-feeder insects in a small stream. Oecologia 58378-382. [ Links ]

Illesova, D., Beracko, P., Krno, I., &amp; Halgos, J. (2010). Effects of land use on black fly assemblages (Diptera: Simuliidae) in submontane rivers (West Carpathians, Slovakia). Biologia 65892-898. [ Links ]

Kazanci, N., &amp; Ertunc, O. (2010). Use of Simuliidae (Insecta, Diptera) species as indicators of aquatic habitat quality of Yes.ilirmak River Basin (Turkey). Review of Hydrobiology 327-36. [ Links ]

Landeiro, V. L., Pepinelli, M., &amp; Hamada, N. (2009). Species richness and distribution of black flies (Dip&amp;tera: Simuliidae) in the Chapada Diamantina region, Bahia, Brazil. Neotropical Entomology 38332-339. [ Links ]

Mackereth, J. F. H., Heron, J., &amp; Talling, J. F. (1978). Water analysis: some revised methods for limnolo-gists Ambleside, Cumbria: Freshwater Biological Association. [ Links ]

Malmqvist, B. (1994). Preimaginal blackflies (Diptera: Simuliidae) and their predators in a central Scandi&amp;navian lake outlet stream. Annales Zoologici Fennici 31245-255. [ Links ]

Mcallister, D. E., Hamilton, A. L., &amp; Harvey, B. (1997). Global freshwater biodiversity: striving for the inte&amp;grity of freshwater ecosystems. Sea Wind 111-142. [ Links ]

Mcintosh, A. R., &amp; Townsend, C. R. (1996). Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish induced changes to grazer behaviour. Oecologia 108174-181. [ Links ]

Nessimian, J. L., Venticinque, E. M., Zuanon, J., De Marco, P. JR., Gordo, M., Fidelis, L., Batista, J. D., &amp; Juen, L. (2008). Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614117-131. [ Links ]

Nusch, E. A., &amp; Palme, G. (1975). Biologische methoden für die praxis der gewässeruntersuchung. Bestim&amp;mung des Chlorophyll a und phaeopigmentgehaltes in oberflächenwasser. GWF-Wasser/Abwasser 116562-565. [ Links ]

Paiva, D. P. (2000). O borrachudo como indicador biolò&amp;gico da qualidade da àgua Concordia, SC: Embrapa Suinos e Aves. [ Links ]

Pepinelli, M., Trivinho-Strixino, S., &amp; Hamada, N. (2005). Imaturos de Simuliidae (Diptera: Nematocera) e caracterizacäo de seus criadouros no Parque Estadual Intervales, SP, Brasil. Revista Brasileira de Entomo&amp;logia 49527-530. [ Links ]

Petersen, R. C. J. R. (1992). The RCE: a riparian, chan&amp;nel, and environmental inventory for small streams in agricultural landscape. Freshwater Biology 27295-306. [ Links ]

Reece, P. F., &amp; Richardson, J. S. (1999). Biomonitoring with the reference condition approach for the detec&amp;tion of aquatic ecosystems at risk. In L. M. Darling (Ed.). Proceedings of a Conference on the Biology and Management of species and habitats at risk (pp. 549-552). Retrieved from: http://www.env.gov.bc.ca/ wld/documents/re11reece.pdfLinks ]

Regis, L., Silva, S. B., Alice, M., &amp; Santos, M. (2000). The Use of Bacterial Larvicides in Mosquito and Black Fly Control Programmes in Brazil. Memòrias do Instituto Oswaldo Cruz 95207-210. [ Links ]

Resh, V., &amp; Rosenberg, D. (1984). The ecology of aquatic insects New York: Praeger. [ Links ]

Rühm, W. (1998). Das Habitat und seine Strukturen als Voraussetzung fu" r die autochthone Entwicklung von Schadgebieten der Kriebelmu" cken (Diptera: Simu&amp;liidae). Entomologia Generalis 2327-37. [ Links ]

Seitz, G. (1992). Verbreitung und O" kologie der Krie&amp;belmu" cken (Diptera: Simuliidae) in Niederbayern. Lauterbornia 11, 1-231. [ Links ]

Sheil, D., &amp; Burslem, D. F. R. P. (2013). Defining and defending Connel's intermediate disturbance hypothesis: a response to Fox. Trends in Ecology &amp; Evolution 28571-572. [ Links ]

Shelley, A. J., Hernández, L. M., Maia-Herzog, M., Luna Dias, A. P. A., &amp; Garritano, P. R. (2010). The Blac&amp;kflies (Diptera: Simuliidae) of Brazil J. R. Arias, S. Golovatch, K. M. Wantzen, &amp; E. Dominguez (Series Eds.). Aquatic biodiversity in Latin America (Vol 6, p. 821). ABLA Series. [ Links ]

Shepp, D. L., &amp; Cummins, J. D. (1997). Restoration in an urban watershed: Anacostia River of Maryland and the district of Columbia. In J. E. Williams, C. A. Wood, &amp; M. P. Dombeck (Eds.), Watershed restoration: principles and practices (pp. 297-317). Bethesda: American Fisheries Society. [ Links ]

Strieder, M. N. &amp; Corseuil, E. (1992). Atividades de hematofagia em Simuliidae (Diptera, Nematocera) na Picada Veräo, Sapiranga, RS-Brasil. Acta Biologica Leopoldensia 1475-98. [ Links ]

Strieder, M. N., Ronchi, L. H., Stenert, C., Scherer, R. T., &amp; Neiss, U. G. (2006). Medidas biológicas e índices de qualidade da água de uma microbacia com poluicäo urbana e de curtumes no sul do Brasil. Acta Biologica Leopoldensia 2817-24. [ Links ]

Svensson, J. R., Lindegarth, M., Jonsson, P. R., &amp; Pavia, H. (2012). Disturbance-diversity models: what do they really predict and how are they tested? Procee&amp;dings of the Royal Society: Biological Science s 2792163-2170. [ Links ]

Ter Braak, C. J. F., &amp; Smilauer, P. (2002). CANOCO Refe&amp;rence manual and CanoDraw for Windows user's guide: Software for Canonical Community Ordina&amp;tion (version 4.5) Wageningen: Bometris. [ Links ]

Timm, T. (1995). Ufer- und Auestrukturen und Simuliiden-Plagen In C. Steinberg, W. Bernhardt, &amp; H. Klapper (Eds.), Handbuch Angewandte Limnologie (p. 28). Weinheim: Kluwer Academic Publishers. [ Links ]

Travis, B. V., &amp; Vargas, V. M. (1978). Bionomics of black flies (Diptera: Simuliidae) in Costa Rica. Correlations with ecological factors. Revista Biología Tropical 26335-345. [ Links ]

Zhang, Y., Malmqvist, B., &amp; Englund, G. (1998). Eco&amp;logical processes affecting community structure of blackfly larvae in regulated and unregulated rivers: A regional study. Journal of Applied Ecology 35673-686. [ Links ]

Received: October 03, 2014; Revised: February 25, 2015; Accepted: March 27, 2015

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License