SciELO - Scientific Electronic Library Online

 
vol.27 número1Climate-driven statistical models as effective predictors of local dengue incidence in costa rica: a generalized additive model and random forest approachA delay differential equations model for disease transmission dynamics índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Matemática Teoría y Aplicaciones

versão impressa ISSN 1409-2433

Resumo

CALVO, Juan G.; HERNANDEZ, Alberto; PORTER, Mason A.  e  SANCHEZ, Fabio. A two-patch epidemic model with nonlinear reinfection. Rev. Mat [online]. 2020, vol.27, n.1, pp.23-48. ISSN 1409-2433.  http://dx.doi.org/10.15517/rmta.v27i1.39946.

The propagation of infectious diseases and its impact on individuals play a major role in disease dynamics, and it is important to incorporate population heterogeneity into efforts to study diseases. As a simplistic but illustrative example, we examine interactions between urban and rural populations on the dynamics of disease spreading. Using a compartmental framework of susceptible-infected-susceptible (SI S ) dynamics with some level of immunity, we formulate a model that allows nonlinear reinfection. We investigate the effects of population movement in a simple scenario: a case with two patches, which allows us to model population movement between urban and rural areas. To study the dynamics of the system, we compute a basic reproduction number for each population (urban and rural). We also compute steady states, determine the local stability of the disease-free steady state, and identify conditions for the existence of endemic steady states. From our analysis and computational experiments, we illustrate that population movement plays an important role in disease dynamics. In some cases, it can be rather beneficial, as it can enlarge the region of stability of a disease-free steady state.

Palavras-chave : dynamical systems; population dynamics; mathematical modeling; biological contagions; population movement..

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )