SciELO - Scientific Electronic Library Online

 
vol.64 issue2Evaluation of the growth of Callinectes sapidus (Decapoda: Portunidae) by the use of lengthbased methods based on size in Tamaulipas, Mexico .Histochemistry of the digestive gland of the pearl oyster Pinctada imbricata (Pterioida: Pteriidae) during the gametogenic cycle, Venezuela . author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Abstract

RODRIGUEZ-BARRERAS, Ruber; CUEVAS, Elvira; CABANILLAS-TERAN, Nancy  and  BRANOFF, Benjamin. Understanding trophic relationships among Caribbean sea urchins. Rev. biol. trop [online]. 2016, vol.64, n.2, pp.837-848. ISSN 0034-7744.  http://dx.doi.org/10.15517/rbt.v64i2.19366.

The species Echinometra lucunter, Echinometra viridis, Lytechinus variegatus, Tripneustes ventricosus, and Diadema antillarum are the most common sea urchins of littoral habitats in the Caribbean. T. ventricosus and L. variegatus are associated with seagrass beds, while the other three species usually inhabit hardground substrates. Food preferences of these species are well documented and they are commonly accepted as being primarily herbivorous-omnivorous; nevertheless, few of them have previously been characterized isotopically. We used this approach for assessing the isotopic characterization of five echinoids. We established the trophic position of two groups of co-occurring species and quantified the contribution of food resources in the diet of Echinometra lucunter, considered the most common sea urchin in the Caribbean region. The species T. ventricosus and D. antillarum showed the highest values of δ15N. Sea urchins exhibited similar values of δ13C varying from -11.6 ± 0.63 to -10.4 ± 0.99%. The echinoid E. lucunter displayed the lowest values of carbon, from -15.40 ± 0.76%. Significant differences among species were found for δ15N and δ13C. Seaweed communities exhibited no differences among sites for overall δ15N (F= 1.300, df= 3, p= 0.301), but we found spatial differences for δ13C (F= 7.410, df= 3, p= 0.001). The ellipse-based metrics of niche width analysis found that the hardground biotope species (D. antillarum, E. lucunter, and E. viridis) did not overlap each other. Similar results were obtained for the co-occurring species of the seagrass biotope; however, the distance between these species was closer than that of the hardground biotope species. The Bayesian mixing models run for E. lucunter at all four localities found differences in food resources contribution. The algae D. menstrualis, C. crassa and B. triquetrum dominated in CGD; whereas C. nitens, Gracilaria spp., and D. caribaea represented the main contributor algae to the diet of E. lucunter at LQY. In Culebra Island, no dominance of any particular algae was detected in TMD, where six of the eight species exhibited a similar contribution. Similarities in δ15N between D. antillarum and T. ventricosus may hint towards a similar trophic level for these species, although T. ventricosus is widely accepted as an omnivore, while D. antillarum is considered a generalist herbivore. The lack of overlap among species in the two biotopes seems to indicate a resource partitioning strategy to avoid niche competition among co-occurring species. Rev. Biol. Trop. 64 (2): 837-848. Epub 2016 June 01.

Keywords : stable isotopes; trophic ecology; Bayesian mixing models; sea urchins; Puerto Rico.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )