SciELO - Scientific Electronic Library Online

 
vol.62 suppl.3Unexpected results from direct measurement, with a torsion microbalance in a closed system, of calcification rates of the coral Agaricia agaricites (Scleractinia:Agariicidae) and concomitant changes in seawater pHPossible recovery of Acropora palmata (Scleractinia:Acroporidae) within the Veracruz Reef System, Gulf of Mexico: a survey of 24 reefs to assess the benthic communities author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Abstract

HERNANDEZ-DELGADO, Edwin A.; GONZALEZ-RAMOS, Carmen M.  and  ALEJANDRO-CAMIS, Pedro J.. Large-scale coral recruitment patterns on Mona Island, Puerto Rico: evidence of a transitional community trajectory after massive coral bleaching and mortality. Rev. biol. trop [online]. 2014, vol.62, suppl.3, pp.283-298. ISSN 0034-7744.

Coral reefs have largely declined across the northeastern Caribbean following the 2005 massive bleaching event. Climate change-related sea surface warming and coral disease outbreaks of a white plague-like syndrome and of yellow band disease (YBD) have caused significant coral decline affecting massive reef building species (i.e., Orbicella annularis species complex) which show no apparent signs of recovery through larval sexual recruitment. We addressed coral recruit densities across three spur and groove reef locations along the western shelf of remote Mona Island, Puerto Rico: Punta Capitán (PCA), Pasa de Las Carmelitas (PLC), and Las Carmelitas-South (LCS). Data were collected during November 2012 along 93 haphazard transects across three depth zones (<5m, 5-10m, 10-15m). A total of 32 coral species (9 octocorals, 1 hydrocoral, 22 scleractinians) were documented among the recruit community. Communities had low densities and dominance by short-lived brooder species seven years after the 2005 event. Mean coral recruit density ranged from 1.2 to 10.5/m2 at PCA, 6.3 to 7.2/m2 at LCS, 4.5 to 9.5/m2 at PLC. Differences in coral recruit community structure can be attributed to slight variation in percent macroalgal cover and composition as study sites had nearly similar benthic spatial heterogeneity. Dominance by ephemeral coral species was widespread. Recovery of largely declining massive reef-building species such as the O. annularis species complex was limited or non-existent. The lack of recovery could be the combined result of several mechanisms involving climate change, YBD disease, macroalgae, fishing, urchins and Mona Island’s reefs limited connectivity to other reef systems. There is also for rehabilitation of fish trophic structure, with emphasis in recovering herbivore guilds and depleted populations of D. antillarum. Failing to recognize the importance of ecosystem-based management and resilience rehabilitation may deem remote coral reefs recovery unlikely.

Keywords : Climate change; coral decline; coral recruitment; community trajectory; Mona Island; Puerto Rico; transitional state.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License