SciELO - Scientific Electronic Library Online

 
vol.58 número2Bibliometría de la sistemática biológica sobre América Latina durante el siglo XX en tres bases de datos mundialesSpatial and temporal land cover changes in Terminos Lagoon Reserve, Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

Compartir


Revista de Biología Tropical

versión On-line ISSN 0034-7744versión impresa ISSN 0034-7744

Resumen

SANCHEZ-ARIAS, Luz Esther; PAOLINI, Jorge  y  RODRIGUEZ, Jon Paul. Dinámica de las propiedades del suelo en bosques de Rhizophora mangle L. (Rhizophoraceae) en Isla de Margarita, Venezuela. Rev. biol. trop [online]. 2010, vol.58, n.2, pp.547-564. ISSN 0034-7744.

Dynamics of soil properties in forests of Rhizophora mangle L. (Rhizophoraceae) in Margarita Island, Venezuela. Biochemical and microbiological properties of soils can provide information related to ecosystems environmental status. With the aim to determine the response of microbial biomass, and enzymatic and microbial activity in hypersaline (IS≥55ups) and saline (IS<55ups) mangrove soils exposed to interstitial salinities (IS) greater than 36ups, these properties were measured in mono-specific forests of Rhizophora mangle at Laguna de la Restinga National Park (Margarita Island, Venezuela). During three seasons (dry, wet and transition), a total of 120 soil samples were collected from ten (5 hypersaline and 5 saline) randomly-selected sites of 1000m2 each. Four soil samples (400-500g) per plot were randomly collected with a corer at a depth of 10cm using a 1m2 quadrat; each sample consisted in the combination of 8 sub-samples (50-60g ea.). Physical, chemical, enzymatic, biochemical and microbiological properties of soil samples were determined using standard laboratory protocols. The response of microbial biomass and microbial and enzymatic activity was analyzed taking into account spatial and climatic factors and interstitial salinity. Microbial biomass was linked to each locality conditions, and was not sensitive to seasonal or salinity differences. Microbial activity remained functionally active during the study period and presented variable responses. Dehydrogenase activity proved to be a good indicator for flooded and anoxic environments, and arginine ammonification resulted to be the more sensitive microbial activity to changes in salinity. Regarding enzyme activities, spatial variability was the most widespread response. We did not find a unique general pattern between enzymatic activities and spatio-temporal variation; and only the enzyme phosphatase was negatively affected by salinity. We conclude that microbial populations of mangrove soils and their activities have functional adaptations to flooded and highly-saline environments typical of a negative estuary, subjected to drastic changes due to weather and water dynamics. Future studies are needed to determine the relation between the "health" of mangrove forest and microbial populations, and their activities in mangroves soils. Rev. Biol. Trop. 58 (2): 547-564. Epub 2010 June 02.

Palabras clave : enzymes; Laguna de La Restinga; mangrove forest; microbial activity; Rhizophora mangle; salinity; soils.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons