SciELO - Scientific Electronic Library Online

 
vol.55 número3-4Actividad antifúngica de extractos orgánicos del árbol Fagara monophylla (Rutaceae) en VenezuelaThe function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae) at two neotropical sites índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista de Biología Tropical

versão On-line ISSN 0034-7744versão impressa ISSN 0034-7744

Resumo

KUMAR, Shristi; HATHA, A.A.M  e  CHRISTI, K.S. Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev. biol. trop [online]. 2007, vol.55, n.3-4, pp.777-786. ISSN 0034-7744.

The diversity and load of heterotrophic bacteria and fungi associated with the mangrove soil from Suva, Fiji Islands, was determined by using the plate count method. The ability of the bacterial isolates to produce various hydrolytic enzymes such as amylase, gelatinase and lipase were determined using the plate assay. The heterotrophic bacterial load was considerably higher than the fungal load. There was a predominance of the gram positive genus, Bacillus. Other genera encountered included Staphylococcus, Micrococcus, Listeria and Vibrio. Their effectiveness on the degradation of commercial polythene carry bags made of high density polyethylene (HDPE) and low density polyethylene (LDPE) was studied over a period of eight weeks in the laboratory. Biodegradation was measured in terms of mean weight loss, which was nearly 5 % after a period of eight weeks. There was a significant increase in the bacterial load of the soil attached to class 2 (HDPE) polythene. After eight weeks of submergence in mangrove soil, soil attached to class 1 and class 3 polythene mostly had Bacillus (Staphylococcus predominated in class 2 polythene). While most of the isolates were capable of producing hydrolytic enzymes such as amylase and gelatinase, lipolytic activity was low. Class 2 HDPE suffered the greatest biodegradation. Rev. Biol. Trop. 55 (3-4): 777-786. Epub 2007 December, 28.

Palavras-chave : Mangrove soil; heterotrophic bacteria; plastic pollution; microbial degradation; biodegradation; hydrolytic enzymes.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons