SciELO - Scientific Electronic Library Online

 
vol.48 issue2-3Population dynamics and stock assessment for Octopus maya (Cephalopoda:Octopodidae) fishery in the Campeche Bank, Gulf of MexicoStomatopods (Crustacea: Hoplocarida) from the Gulf of Tehuantepec, Mexico author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Revista de Biología Tropical

On-line version ISSN 0034-7744Print version ISSN 0034-7744

Abstract

MONGE-NAJERA, Julián  and  HOU, Xianguang. Disparity, decimation and the Cambrian "explosion": comparison of early Cambrian and Present faunal communities with emphasis on velvet worms (Onychophora). Rev. biol. trop [online]. 2000, vol.48, n.2-3, pp.333-351. ISSN 0034-7744.

The controversy about a Cambrian "explosion" of morphological disparity (followed by decimation), cladogenesis and fossilization is of central importance for the history of life. This paper revisits the controversy (with emphasis in onychophorans, which include emblematic organisms such as Hallucigenia), presents new data about the Chengjiang (Cambrian of China) faunal community and compares it and the Burgess Shale (Cambrian of Canada) with an ecologically similar but modern tropical marine site where onychophorans are absent, and with a modern neotropical terrestrial onychophoran community. Biovolume was estimated from material collected in Costa Rica and morphometric measurements were made on enlarged images of fossils. Cambrian tropical mudflats were characterized by the adaptive radiation of two contrasting groups: the vagile arthropods and the sessile poriferans. Arthropods were later replaced as the dominant benthic taxon by polychaetes. Vagility and the exoskeleton may explain the success of arthropods from the Cambrian to the modern marine and terrestrial communities, both in population and biovolume. Food ecological displacement was apparent in the B. Shale, but not in Chengjiang or the terrestrial community. When only hard parts were preserved, marine and terrestrial fossil deposits of tropical origin are even less representative than deposits produced by temperate taxa, Chengjiang being an exception. Nutrient limitations might explain why deposit feeding is less important in terrestrial onychophoran communities, where carnivory, scavenging and omnivory (associated with high motility and life over the substrate) became more important. Fossil morphometry supports the interpretation of "lobopod animals" as onychophorans, whose abundance in Chengjiang was equal to their abundance in modern communities. The extinction of marine onychophorans may reflect domination of the infaunal habitat by polychaetes. We conclude that (1) a mature ecological community structure was generalized during the Cambrian, and even biodiversity and equitability indices were surprisingly close to modern values; (2) the morphological diversity and geographic distribution of onychophorans indicate a significant pre-Cambrian evolutionary history which does not support the "explosion" hypothesis; (3) disparity among phyla was not as important as the explosion-decimation model predicts, but in the case of onychophorans, disparity within the phylum was greater than it is today and its reduction may have been associated with migration into the sediment when large predators evolved.

Keywords : Disparity; decimation; "explosion"; community ecology; feeding; habitat; fossil; Metazoa; evolution; Chengjiang; Burgess Shale; Cambrian; Recent; Costa Rica.

        · abstract in Spanish     · text in English

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License