Scielo RSS <![CDATA[Lankesteriana]]> http://www.scielo.sa.cr/rss.php?pid=1409-387120160002&lang=pt vol. 16 num. 2 lang. pt <![CDATA[SciELO Logo]]> http://www.scielo.sa.cr/img/en/fbpelogp.gif http://www.scielo.sa.cr <![CDATA[<strong><em>Maxillariaaureoglobula</em></strong> (orchidaceae, maxillariinae): a new record from Brazil]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200119&lng=pt&nrm=iso&tlng=pt Abstract We present the first record of Maxillariaaureoglobulafrom Brazil, found at Mato Grosso State, in Southern Amazon. A description, illustration, photos and comments about the species are provided.<hr/>Resumo Apresentamos o primeiro registro de Maxillariaaureoglobulapara o Brasil, encontrado no estado do Mato Grosso, na Amazônia meridional. É apresentada a descrição, ilustração, prancha fotográfica e comentários da espécieestudada. <![CDATA[Notes and description amendment of <strong><em>Telipogonphuyupatamarcensis</em></strong> (orchidaceae)]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200123&lng=pt&nrm=iso&tlng=pt Abstract Telipogonphuyupatamarcensisis a Peruvian endemic and poorly known species. Living specimens of various populations were examined. An updated description, illustrations, figures and taxonomic notes are provided.<hr/>Resumen Telipogonphuyupatamarcensis es una especie poco conocida y endémica de Perú. Especímenes vivos de diversas poblaciones fueron revisadas. Se proveen una descripción actualizada, ilustraciones, figuras y notas taxonómicas. <![CDATA[The Andean Genus <strong><em>Myrosmodes</em></strong> (Orchidaceae, Cranichideae) in Peru]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200129&lng=pt&nrm=iso&tlng=pt Resumen Se presenta una revisión de Myrosmodes del Perú. Se aceptan siete especies para el país. Se describe e ilustra cada especie con base en la revisión del material tipo, protólogos y material peruano. Se evalúa su distribución en el país. Myrosmodes nervosa se registra por primera vez para el Perú. Se proponen nuevos sinónimos: M. cleefii es incluido bajo la sinonimia de M. nubigena, M. inaequalis y M. pumilio bajo M. paludosa, M. weberbaueri bajo M. gymnandra y M. cochlearis bajo M. rhynchocarpa. También se proporciona una clave para identificar las especies reconocidas. Se designa un lectotipo para Aa chiogena.<hr/>Abstract A revision of Myrosmodes from Peru is presented. Seven species are recognized for the country. Each species is described and illustrated on the basis of a revision of type material, protologues and Peruvian specimens. Its distribution within the country is assessed. Myrosmodes nervosa is recorded for first time in Peru. New synonyms are proposed: M. cleefii is included under M. nubigena, M. inaequalis and M. pumilio under M. paludosa,M. weberbaueri under M. gymnandra, and M. cochlearis under M. rhynchocarpa. A key to identify the seven recognized species is also provided. A lectotype is designated for Aa chiogena. <![CDATA[New Species and Nomenclatural Notes in Pabstiella(Orchidaceae: Pleurothallidinae) from Brazil]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200153&lng=pt&nrm=iso&tlng=pt Abstract Two new species, Pabstiella calimanii and Pabstiella recurviloba, are described and illustrated. One new combination, Pabstiella deltoglossa, is proposed. Eight species and one variety are proposed as synonyms. They are listed in alphabetical order: Pabstiella avenacea, P. leucosepala and Pleurothallis mathildae as synonyms of Pabstiella elegantula; Pabstiella cipoensis as a synonym of P. pristeoglossa; Pleurothallis magnicalcarata and Pabstiella mentigera as synonyms of P. calcarata; Pabstiella pterophora and Pleurothallis pterophora var. minor as synonyms of Pabstiella leucopyramis, and Pabstiella podoglossa as a synonym of P. versicolor. Lectotypes are selected for four species: Pleurothallis avenacea, P. mentigera, P. pristeoglossa and P. pterophora. An epitype is selected for Pleurothallis pristeoglossa. Illustrations and taxonomic discussions are also provided. <![CDATA[Evolutionary diversification and historical biogeography of the orchidaceae in Central America with Emphasis on Costa Rica and Panama]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200189&lng=pt&nrm=iso&tlng=pt Abstract: Historically, the isthmus of Costa Rica and Panama has been a source of fascination for its strategic position linking North America to South America. In terms of biodiversity, the isthmus is considered one of the richest regions in the world. Orchidaceae is the most diverse plant family in the area, and the number of species is triple that of other well-represented angiosperm families such as Rubiaceae, Fabaceae and Poaceae. Though we are still far from knowing the exact number of orchid species occurring extant in both countries nowadays, at present the orchid flora reported for Costa Rica (1574 spp.) and Panama (1372 spp.) summarise together about 2010 species; which represents 6.5-8.0% of all orchid species on just about 1% of the Earth's land surface. Pleurothallidinae and Laeliinae are the most species rich groups and contain the largest genera: Lepanthes, Pleurothallis, Stelis and Epidendrum. These groups significantly outnumber the other genera recorded in terms of species richness. Some factors explaining this regional taxonomic diversity of orchids are the natural land bridge uniting three of the 25 recognized hotspots worldwide (Mesoamerica, Choco/Darien/Western Ecuador and tropical Andes), the climatic influence of the Pacific and Atlantic oceans, and the recent lifting of the Cordillera de Talamanca and the formation of foothills of Majé, Darien and San Blas in Panama and western Colombia. Although these factors can explain the high diversity in general terms, detailed information is needed to understand species diversification as well as the evolution of the floristic composition. Updated floristic inventories (yielding a rate of 25 new species/year) and the study of biological mechanisms that have led to the evolutionary diversification of Lepanthes (one of the major groups of orchids) are the main ongoing research projects to elucidate the evolution of Orchidaceae in Costa Rica and Panama. Towards this end, we present some preliminary results of the research conducted in this direction including the integration of phylogenetics, pollination ecology, taxonomy and biogeography.<hr/>Resumen: Históricamente, el Istmo de Costa Rica y Panamá ha sido fuente de fascinación por su posición estratégica, uniendo América del Norte con América del Sur. En términos de biodiversidad, el Istmo es considerado una de las regiones más ricas del mundo. Orchidaceae es la familia de plantas más diversa en la zona, y el número de especies triplica a otras familias de angiospermas bien representadas como Rubiaceae, Fabaceae y Poaceae. Aunque todavía estamos lejos de conocer el número exacto de especies de orquídeas existentes en ambos países, en la actualidad la flora de orquídeas registradas para Costa Rica (1574 spp.) y Panamá (1372 spp.) suman en conjunto alrededor de 2010 especies; lo que representa 6,5-8,0% de todas las especies de orquídeas en apenas alrededor de 1% de la superficie terrestre del planeta. Pleurothallidinae y Laeliinae son los grupos más ricos en especies y contienen la mayor géneros: Lepanthes, Pleurothallis, Stelis y Epidendrum. Estos grupos superan significativamente los otros géneros registrados en términos de riqueza de especies. Algunos de los factores que explican esta diversidad taxonómica regional de orquídeas son el puente natural que une tres de los 25 puntos reconocidos en todo el mundo (Mesoamérica, Chocó / Darién / Ecuador Occidental y Andes tropicales), la influencia climática de los océanos Pacífico y Atlántico, y la reciente elevación de la Cordillera de Talamanca y la formación de estribaciones de Majé, Darién y San Blas, en Panamá y el oeste de Colombia. Aunque estos factores pueden explicar la alta diversidad de orquídeas en términos generales, se necesita información detallada para comprender la diversificación de especies, así como la evolución de la composición florística. Los inventarios florísticos actualizados (con una tasa de 25 nuevas especies / año) y el estudio de los mecanismos biológicos que han llevado a la diversificación evolutiva de Lepanthes (como uno de los géneros más grandes de orquídeas) son los principales proyectos de investigación en curso para dilucidar la evolución de Orchidaceae en Costa Rica y Panamá. Con este fin, presentamos algunos resultados preliminares de la investigación llevada a cabo en esta dirección que incluye la integración de estudios filogenéticos, ecología de la polinización, taxonomía y biogeografía. <![CDATA[An integrated strategy for the conservation and sustainable use of native <strong><em>vanilla</em></strong> species in Colombia]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200201&lng=pt&nrm=iso&tlng=pt Abstract: The natural vanilla essence is obtained principally from the fruits of the species Vanilla planifolia, a member of the Vanilla aromatic clade, and native to the neo-tropics. Colombia is an important center of diversity for the genus with 22 Vanilla species reported, of which 18 belong to the aromatic clade. Colombian native Vanilla species comprise important genetic resources for the vanilla crop. Although there is no tradition of cultivation of vanilla in the country, these species have potential for establishment in sustainable agroforestry systems. Nonetheless, Vanilla, like many orchid species, is subject to both intrinsic and extrinsic conservation threats. This article outlines an integrated strategy for conservation, incorporating in situ, ex situ and circa situm measures to ensure the conservation of Vanilla species in Colombia, and to promote their sustainable use in community-based cultivation programs. This proposed strategy is also relevant for conservation managers in other countries with native Vanilla species. <![CDATA[<strong><em>Genera Pleurothallidinarum</em></strong> : An updated phylogenetic overview of pleurothallidinae]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200219&lng=pt&nrm=iso&tlng=pt Abstract: Subtribe Pleurothallidinae with just over 5000 species is possibly the most species-rich of all orchids. It has been growing steadily for more than two centuries, but the last three decades have been especially active in terms of systematic and phylogenetic studies in the group. The growth in species numbers has been accompanied by the marked increase in generic and infrageneric concepts. Nevertheless, Pleurothallidinae are plagued with cases of convergent and divergent morphology, and phylogenetic relatedness is not always apparent. This opens the door to controversial changes in generic circumscriptions that are considered too inclusive by some and too exclusive by others. A grave consequence of these disagreements is the difficulty of assessing which and how many species actually belong to each genus. Here an attempt is made to place generic names among their close relatives as a first step to re-evaluating the whole subtribe. <![CDATA[Active tectonic and volcanic mountain building as agents of rapid environmental changes and increased orchid diversity and long-distance orchid dispersal in the tropical Americas: opportunities and challenges]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200243&lng=pt&nrm=iso&tlng=pt Abstract: Tropical Latin America is a nexus of tectonic plates whose relative motions have led to rapid tectonic and volcanic mountain building in late Neogene time. Tropical mountain building, in turn, leads to highland "cloud forest" microclimates with increased rainfall, lower diurnal temperatures, and diverse microclimates. I have previously emphasized how the geologically recent growth of mountains has been localized in Central America and that this is likely a factor in the high diversity and endemism in those highlands. This paper will show that Andean uplift accelerated at ~15 Ma ago and ~5 Ma BP and continues to this day. This process evolved geographically among the cordilleras of the region. Givnish and others recently presented phylogenomic evidence that the diversity of many epiphytic orchids, including tribes found in the neotropics, also accelerated during this time interval. Phylogenetic investigations of tropical orchid pollinators have shown that acceleration in speciation in such pollinators as hummingbirds, orchid bees, and flies occurred over this same time frame, suggesting that geologically driven environmental changes may have acted in concert with changes in orchid biology to speed up orchid diversity in these highlands. I also review some of the long-distance dispersal processes of orchids in the tropical Americas. River systems draining the Colombian Andes discharge into the Caribbean Sea and current-driven log-raft drifts and air suspension during cyclonic storms transport plants and animals from east to the west. Lastly I emphasize the need for the more information on orchid floras and species distribution in this hotspot. <![CDATA[Recent advances on evolution of pollination systems and reproductive biology of vanilloideae (orchidaceae)]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200255&lng=pt&nrm=iso&tlng=pt Abstract: Vanilloideae as currently circumscribed comprises nine genera and two tribes: Vanilleae and Pogonieae. The pantropical genus Vanilla has been frequently assumed to be natural on the basis of its climbing habit and lateral inflorescences. However, the inclusion of the rare Dictyophyllaria dietschiana in phylogenetic analyses makes the genus Vanilla paraphyletic. Within Pogonieae, phylogenetic analyses show that inclusion of Pogoniopsis turns the tribe paraphyletic. All analyses reveal that Pogoniopsis is closely related to members of Epidendroideae. Members of Pogonieae are pollinated by several groups of solitary and social bees, two pollination systems being recognized: reward-producing and deceptive. Molecular phylogeny suggests that the common ancestor to Pogonieae gave rise to two evolutionary lineages: one tropical with a condition of reward production; and one predominantly temperate-invading line with deceptive flowers. Reward-producing flowers characterize South and Central American clade (= Cleistes), while deceptive pollination is prominent in the clade including North American-Asiatic taxa plus Amazonian Duckeella. Species of "orchid bees" have been recorded as pollinators of the genus Vanilla (V. planifolia group and V. pompona group) in the Neotropics. In species of the V. pompona group, these bees are attracted by the fragrance of the flowers. Hummingbirds have been reported to pollinate some species of Vanilla. Vanilla insignis, V. odorata and V. planifolia are known to be pollinated through generalized food deception. Some species of Vanilla yield fruits through spontaneous selfpollination. This form of autogamy has been reported for V. griffithii, V. palmarum, V. planifolia, V. savannarum and V. bicolor. In Brazil, data on the pollination biology of Vanilla are scarce, but conclusive data are available for V.edwallii, which is pollinated by Epicharis (Apidae: Centridini). This species is rewardless, but male Epicharis are attracted to its flowers by their fragrance. Additionally, the Brazilian V. dubia and E. sclerophyllum are pollinated by bees. The mentum region of V. dubia and V. edwallii is dry, whereas that of E. sclerophyllum presents a small quantity of nectar. Flowers of E. sclerophyllum are scentless, while those of V. dubia are odoriferous. Vanilla dubia and V. edwallii are self-compatible and need a pollinator to yield fruits. In contrast, Epistephium sclerophyllum sets fruits through spontaneous self-pollination, but biotic pollination also occurs.Both species are primarily adapted to pollination by euglossine bees. Pollination by Euglossini seems to have evolved at least twice along the evolution of Vanilleae. Furthermore, shifts between rewarding and rewardless flowers and between autogamous and allogamous species have been reported among vanillas. <![CDATA[Efecto del herbicida glifosato en hongos endófitos de raíz y keikis de <strong><em>Epidendrum melinanthum</em></strong> (orchidaceae)]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200269&lng=pt&nrm=iso&tlng=pt Resumen: El uso de herbicidas ha tenido un impacto grande sobre la producción agrícola y sin duda ha aumentado la producción en muchas cosechas. Desafortunadamente, la aplicación de herbicidas puede tener efectos negativos sobre otras especies nativas aledañas al cultivo. Con el fin de establecer si el herbicida glifosato afecta negativamente a la orquídea terrestre Epidendrum melinanthum y sus hongos endófitos aislados de la raíz, se evaluaron tres dosis de Round Up(r) en keikis y en hongos endófitos previamente aislados. Las dosis de aplicación se determinaron a partir de la utilizada para la maduración en caña de azúcar (1.5 l/Ha equivalentes a 544.5 g de glifosato/l) de la siguiente manera: a) control (sin herbicida), b) dosis de aplicación en caña de un décimo y c) una centésima parte de la dosis de maduración. Se observó en keikis el cambio de coloración en tallo y en hojas, adicional a la caída de las mismas. El Round Up generó afectación en uno de los tres hongos estudiados en forma de un halo de inhibición. Se concluye, que el glifosato afecta negativamente las estructuras foliares de los keikis de manera rápida al aplicar el herbicida sobre las hojas, en adición a la inhibición de hongos endófitos de Epidendrum melinanthum. Estos aspectos sugieren el potencial negativo del herbicida sobre la especie estudiada y su microflora asociada. <![CDATA[Why we have no serious alternatives but cooperative taxonomy]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200279&lng=pt&nrm=iso&tlng=pt Abstract: Taxonomic work has been historically regarded as a two-fold discipline. The first, which is basically aimed at answering the question about the diversity in whatever group under study, includes most of the "biological" questions of the research. Understanding of genetic and morphological variation, structure of populations and life cycles, biogeography and phylogeography, ecological modeling, pollination and other biological components is required to define the relationships among the taxa of the group and eventually to describe their diversity. The second part of the work consists in applying a correct name to all of the organisms as they result from the biological work. This second step is usually interpreted as the documentary component of the research, and in fact it mostly deals with the document sources and the rules of biological nomenclature (such as protologues, types and other historical materials associated with the type collections, etc.). However, the use of nomenclatural sources with little or no consideration for the biological aspects of the concerned organisms can be misleading, and the same concept of "type" can be hardly understood if not framed in a rich biological context. Type specimens are just random, individual samples that must be interpreted in the context of the geographical and biological integrity of any given species, and this requires at least some direct knowledge of the organisms and their biology. When the geographical origin of type specimens lies outside the political boundaries of a given study area, taxonomic research is seriously hampered by the impossibility to visualize and understand them in a biological framework. A specific case from the research intended to complete the treatment of the Orchidaceae for the flora of Costa Rica will exemplify how a cooperative approach based on a shared methodology may be the only way to resolve the taxonomy of complex species.<hr/>Resumen: El trabajo taxonómico ha sido históricamente considerado como una disciplina doble. Por un lado, su objetivo fundamental es responder a la pregunta sobre la diversidad de cualquier grupo bajo estudio, y esto incluye la mayoría de las preguntas "biológicas" de la investigación. Para entender las relaciones y parentescos entre los taxones de un determinado grupo, y finalmente describir su diversidad, se requiere de la comprensión de la variación genética y morfológica, de la estructura de las poblaciones y sus ciclos de vida, de la bio- y filogeografía, de los modelos ecológicos, así como de la polinización y otros componentes bióticos que interactúan con los taxones en estudio. La segunda parte del trabajo consiste en la aplicación de un nombre correcto a cada uno de los organismos así como resultan identificados a través de al etapa biológica del estudio. Esta segunda etapa se interpreta usualmente como la componente documentaria de la investigación, y de hecho tienen mayormente que ver con las fuentes documentales y las reglas de la nomenclatura biológica (tales como protólogos, tipos y otros materiales históricos asociados con las recolectas-tipo, etc.). Sin embargo, el uso de fuentes de nomenclatura asociados a poca o ninguna consideración de los aspectos biológicos de los organismos en estudio puede ser engañoso y el mismo concepto de "tipo" puede difícilmente entenderse si no está enmarcado en un contexto biológico complejo. Los especímenes tipo no son sino ejemplos individuales escogidos al azar, los cuales deben ser interpretados a la luz de la integridad biológica y geográfica de una especie determinada, y esto requiere de por lo menos de algún tipo de conocimiento directo de los organismos y su biología. Cuando el origen geográfico de los especímenes tipo se encuentra afuera de los límites políticos de una determinada área de estudio, la investigación taxonómica se encuentra seriamente impedida por la imposibilidad de visualizar y entender los tipos en un marco biológico. Un ejemplo del trabajo finalizado a completar el tratamiento de Orchidaceae para la flora de Costa Rica puede enseñar como solamente un acercamiento cooperativo, basado en una metodología común, puede resolver la taxonomía de especies complejas. <![CDATA[Determinants of orchid species diversity in Latin America]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200293&lng=pt&nrm=iso&tlng=pt Abstract: Area and latitude are thought to be the most important determinants of species richness. The relative importance of these two factors was recently tested, using data on orchid species diversity in various countries in the world and it was found that size of the country (or of the protected areas within the country) is a better determinant of species diversity in orchids than latitude. On the other hand, literature data indicate that in many groups species richness is also heavily dependent on habitat diversity as expressed by the range of altitudes in the region considered. Here we analyze the species richness data for various countries in Latin America, using the above-mentioned altitudinal amplitude as a proxy. Habitat diversity played a role in tropical, but not in temperate countries. The reason may indicate that in the temperate countries only few orchid species grow in higher elevations, so an increase of altitudinal range of habitats there does not entail a corresponding increase of species richness there. Thus, especially in the tropics, efforts should be directed to preservation of protected areas in all altitudes, rather than to increase of existing reserve size only in areas that are not attractive for human development. <![CDATA[Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador]]> http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-38712016000200299&lng=pt&nrm=iso&tlng=pt Abstract: Orchids are a main component of the diversity of vascular plants in Ecuador with approximately 4000 species representing about 5.3% of the orchid species described worldwide. More than a third of these species are endemics. As orchids, in contrast to other plants, depend on mycorrhizal fungi already for seed germination and early seedling establishment, availability of appropriate fungi may strongly influence distribution of orchid populations. It is currently debated if green orchids depend on specific mycobionts or may be equally promoted by a broad spectrum of mycorrhizal fungi, discussion mostly based on data from temperate regions. Here we summarize results obtained from broad scale investigations in the tropical mountain rain forest of Ecuador revealing associations with members of Serendipitaceae (Sebacinales), Tulasnellaceae, Ceratobasidiaceae (Cantharellales), and Atractiellales. Recent molecular data show that these worldwide spread fungal groups have broad ecological implications and are specifically suited as mycorrhizal fungi of green orchids. We found that main fungal partners and different levels of specificity among orchids and their mycobionts in the tropical mountain forests correspond to findings in other biomes despite the large ecological differences.